
Climate Data Management
System

Robert Drach

Program for Climate Model Diagnosis and
Intercomparison

Lawrence Livermore National Laboratory

November 1999

UCRL-JC-134897

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or precess
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial products, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

Table of Contents

CHAPTER 1 Introduction 7

Overview 7
Basic Concepts 7

Variables 8
Container classes: Databases, Datasets, and CdmsFiles8
Structural classes: Axes and Grids9
Xlinks 10

Partitioned Datasets10
File Template 11
Partition 12

CHAPTER 2 CDMS Python Application
Programming Interface 13

Overview 13
Python types used in CDMS 14

A first example 15
cdms module 17

cdms module functions 18
Class Tags 23

CdmsObj 24
Attributes common to all CDMS objects 24
Getting and setting attributes 24

Axis 25
Axis Internal Attributes 25
Axis Constructors 26
Axis Methods 26
Axis Slice Operators 32

CdmsFile 33
CdmsFile Internal Attributes 33
CdmsFile Constructors 33
CdmsFile Methods 34

Database 36

CDMS Datatypes 36
Overview 37
Database Internal Attributes 38
Database Constructors 39
Database Methods 39
Searching a database42
SearchResult Methods 44
Accessing data 45
ResultEntry Attributes 45
ResultEntry Methods 45
Examples of database searches46

Dataset 47
Dataset Internal Attributes 47
Dataset Constructors 48
Open Modes 49
Template Specifiers 49
Dataset Methods 50

RectGrid 51
RectGrid Internal Attributes 51
RectGrid Constructors 52
RectGrid Methods 52

Variable 58
Variable Internal Attributes 58
Variable Constructors 59
Variable Methods 60
Variable Slice Operators 63

Examples 64
Coordinate Intervals used in getRegion() 64

CHAPTER 3 Regridding data73

Overview 73
regrid module 74
regridder functions 75

Regridder Constructor 75
Regridder function 77

Examples 78

CHAPTER 4 Plotting CDMS data in Python83

Overview 83
Examples 83

Example: plotting a horizontal grid 83
Example: using plot keywords.85
Example: plotting a time-latitude slice85
Example: plotting subsetted data86

plot method 86
plot keywords 87

CHAPTER 5 Climate Data Markup Language
(CDML) 91

Introduction 91
Elements 92

CDML Tags 92

Special Characters93
Special Character Encodings 93

Identifiers 94
GDT Metadata Standard94
CDML Syntax 94

Dataset Element 95
Dataset Attributes 95
Axis Element 96
Axis Attributes 97
Grid Element 98
Variable Element 99
RectGrid Attributes 99
Variable Attributes 100
Attribute Element 101

A Sample CDML Document 101

CHAPTER 6 CDMS Utilities 105

cdimport: Importing datasets into CDMS105

Overview 105
cdimport Syntax 106
cdimport command options 107
Examples 108
File Formats 109
Debugging 109
Name Aliasing 111
Generating Metadata for a File112

CHAPTER 1 Introduction
ed

uc-
ith

Vari-

t is

ta-
1.1 Overview

The Climate Data Management System is an object-oriented data
management system, specialized for organizing multidimensional, gridd
data used in climate analysis and simulation.

1.2 Basic Concepts

The building blocks of CDMS are variables, container classes, str
tural classes, and links. All gridded data stored in CDMS is associated w
variables. The container objects group variables and structural objects.
ables are defined in terms of structural objects.

Most CDMS objects can haveattributes, which are scalar or one-dimen-
sional metadata items. Attributes which are stored in the database, tha
are persistent, are calledexternal attributes. Some attributes areinternal:
they are associated with an object but do not appear explicitly in the da
base.
Climate Data Management System 7

Introduction

8

l
h
t of

l

rien-

tified

ical

 rep-
ed

ws-

ncil

epen-
1.2.1 Variables

Most of the data stored in CDMS has the form of multidimensiona
data arrays. Avariableis a persistent, multidimensional array, together wit
associated metadata. A persistent variable retains its value independen
an application.

A variable may be viewed as a function which maps a multidimensiona
domain onto a range of values. The domain of a variable consists of an
ordered tuple of axes and/or grids which define the shape and spatial o
tation of the variable.

1.2.2 Container classes: Databases, Datasets, and
CdmsFiles

Variables are contained indatasets. A dataset is a collection of vari-
ables and associated structural objects. All objects in a dataset are iden
by a string ID, unique within the dataset.

The data contained in a dataset generally is stored in one or more phys
datafiles. An additional ASCII metafile describes how the files are orga-
nized and named. In a climate simulation application, a dataset usually
resents the data generated by one run of a general circulation or coupl
ocean-atmosphere model.

The metafile associated with a dataset can contain information which is
additional to that in the actual data files. The format of the metafile is
designed for readability, ease of extension, and integration with Web bro
ers. It can be used to enforce naming standards, by ‘aliasing’ variable
names. The format of the metafile is based on the World Wide Web Cou
standard XML language.

A Database is a collection of datasets and other CDMS objects. A Data-
base:

• provides naming mechanisms for accessing and searching its contents ind
dent of local file names.
Climate Data Management System

Basic Concepts

rily
ate

ata-
 pro-

to a
tan-

soci-
read

ne
t a

first

is
atio-

A
lled
i-
rid
• may be associated with a server, local or remote. A given site would ordina
have only a small number of Databases, perhaps one public and a few priv
ones.

• provides a facility for standardization of data. The objects contained in the D
base can be required to adhere to a metadata standard such as GDT. This
vides assurance that data access will be robust.

The process of copying external data into a Database is known as theingest
process. Ingesting data into CDMS involves verifying that data adheres
standard. Mechanisms are provided for adding metadata to meet that s
dard. Thecdimport utility is used to ingest data into CDMS.

CDMS permits access to data files which are ‘outside’ a database. In
CDMS, a file is termed aCdmsFile. CdmsFiles are similar to datasets, in
that they are containers for variables, axes, and grids. However, not all
CDMS objects can be stored in CdmsFiles. Also, the standardization as
ated with the ingest process may not apply to a CdmsFile. Data may be
from a variety of self-describing file formats, including netCDF, HDF,
GRIB, and PCMDI DRS formats.

1.2.3 Structural classes: Axes and Grids

Structural objects are used in the definition of variables. They defi
how a variable is oriented in space and time. For example, suppose tha
variable is a function of time, longitude, and latitude. The domain of the
variable consists of an ordered tuple ofaxes (time, longitude, and latitude).
The domain ordering corresponds to the physical ordering of data: the
axis is ‘slowest varying’.

An axis is a one-dimensional coordinate vector. Within a dataset, an ax
may be shared by more than one variable. An axis may identified as sp
temporal: a time, vertical level, latitude, or longitude axis.

CDMS allows generalization of domains to includegrids. In spatial terms, a
grid is a horizontal partitioning of all or a portion of the Earth’s surface.
grid which can be represented as a pair of axes (latitude, longitude) is ca
aRectGrid. For example, if the domain of a variable is (time, latitude, long
tude), it can also be represented as (time, grid), where grid is the RectG
Climate Data Management System 9

Introduction

10

ral-

to
rids.
re-

a cli-
. In
lti-
-

An

re

con-

of
c-
 a

ts
ar-
set
ion-
(latitude, longitude). This representation allows applications to be gene
ized to non-rectilinear grids.

Grid objects are useful in their own right. In CDMS, grid objects are used
create regridder functions, which can interpolate data arrays between g
A two-dimensional Boolean mask may be associated with a grid, to rep
sent continental regions or areas of missing data.

1.2.4 Xlinks

In CDMS, a dataset may represent data generated by one run of
mate simulation. This leads to a natural grouping of variables by model
intercomparison studies, it is also useful to group data by variable for mu
ple models, and to group associated ensemble runs. This can be accom
plished using Xlinks.

An Xlink is a pointer to an object in another dataset, or to a dataset itself.
Xlink can represent any CDMS object other than another Xlink.

1.3 Partitioned Datasets

A dataset consists of an ASCII metafile in CDML (XML) format,
together with one or more physical datafiles. If a dataset consists of mo
than one physical datafile, it is said to bepartitioned. The information
describing how the data is spread over multiple datafiles is stored in the
metafile as attributes of the dataset and relevant coordinate axes. This
sists of three pieces of information: afile template, adirectory, and aparti-
tion attribute. The directory is an absolute pathname of the root directory
the dataset. The file template is a pathname which is relative to the dire
tory. The partition is a list of indices which describe exactly where along
given coordinate axis a dataset is partitioned.

Most data in CDMS is spatio-temporal data. The axes of variable objec
relate to time, longitude, latitude, and vertical levels. It is convenient to p
tition datasets on the coordinate values of these axes. In CDMS, a data
can be partitioned on at most two axes: time and/or vertical level. Addit
Climate Data Management System

Partitioned Datasets

r can

le
ate
ch
he

s, for
rs x
d v.

one

.

ally, the variables in a dataset can be contained in separate datafiles, o
be grouped together.

1.3.1 File Template

A file templateis a string which serves as the template for the datafi
pathnames. It is a relative pathname which contains one or more templ
specifiers describing which axes are partitioned and, for time axes, whi
time components (year, month, day, hour, minute, second) are part of t
file name.

For example, suppose that a dataset consists of monthly mean variable
years 1980 through 1989 inclusive. The time axis has length 120 (10 yea
12 monthly means/year). The dataset contains three variables: ta, u, an
The dataset is partitioned into 36 files such that each datafile contains
year of data for one variable. The file names are:

sample_ta_1980.nc
sample_u_1980.nc
sample_v_1980.nc
sample_ta_1981.nc
sample_u_1981.nc
...
sample_ta_1989.nc
sample_u_1989.nc
sample_v_1989.nc

The file template for this dataset is

sample_%v_%Y.nc

%v is the specifier for variable name, and%Y is the specifier for the year.
Table 2.23 on page 49 gives the complete list of template specifiers.

All datasets have a.template attribute, having the template string as value
Optionally, a variable may have a.templateattribute as well, overriding the
dataset template.
Climate Data Management System 11

Introduction

12

d
h

on
the

art
1.3.2 Partition

One more piece of information is required to fully describe the
dataset partitioning: the partition attribute. Each axis which is partitione
has a.partition attribute, which is a list of the start and end indices of eac
axis partition.

FIGURE 1. Partitioned axis

Figure 1 shows a time axis, representing the 36 months January, 1980
through December, 1982, with December 1981 missing. The first partiti
interval is (0,12), the second is (12,23), and the third is (24,36), where
interval (i,j) represents all indices k such that i <= k < j. The .partition
attribute for this axis would be the list:

[0, 12, 12, 23, 24, 36]

Note that the end index of the second interval is strictly less than the st
index of the following interval. This indicates that data for that period is
missing.

0 1 2 ... 12 13 ... 24 25 ... 36

Ja
n

19
80

Feb
 1

98
0

M
ar

 1
98

0

Ja
n

19
81

Ja
n

19
82

Feb
 1

98
1

Feb
 1

98
2

Ja
n

‘83

Index value

Coordinate value

Nov
 1

98
1

 23
Climate Data Management System

CHAPTER 2 CDMS Python
Application
Programming Interface
g

ich
self
tion
 lan-

-
ovide
le

tion
 con-
2.1 Overview

This chapter describes the CDMS Python application programmin
interface (API). Python is a popular public-domain, object-oriented lan-
guage. Its features include support for object-oriented development, a r
set of programming constructs, and an extensible architecture. CDMS it
is implemented in a mixture of C and Python. In this chapter the assump
is made that the reader is familiar with the basic features of the Python
guage.

Python supports the notion of amodule, the biggest program unit in the lan
guage. Modules group together associated classes and methods, and pr
a separate namespace. Theimport command makes the module accessib
to an application. This chapter documents thecdms module.

The chapter sections correspond to the CDMS classes. Each sec
contains tables describing the class internal (non-persistent) attributes,
structors (functions for creating an object), and class methods. Method
datatypes may be any of the Python types:
Climate Data Management System 13

CDMS Python Application Programming Interface

14

.,

e-
Table 2.1 Python types used in CDMS

Type Description

Array Numeric multidimensional data array. All elements of
the array are of the same type. Defined in theNumeric
module.

Comptime Absolute time value, a time with representation (year,
month, day, hour, minute, second). Defined in the
cdtime module. cf.reltime

Dictionary An unordered collection of objects, indexed by key. All
dictionaries in CDMS are indexed by strings, e.g.:

axes[‘time’]

Float Floating-point value.

Integer Integer value.

List An ordered sequence of objects, which need not be of
the same type. New members can be inserted or
appended. Lists are denoted with square brackets, e.g

[1, 2.0, ‘x’, y’]

None No value returned.

Reltime Relative time value, a time with representation (value,
“units since basetime”). Defined in thecdtime module.
cf. comptime

Tuple An ordered sequence of objects, which need not be of
the same type. Unlike lists, tuples elements cannot be
inserted or appended. Tuples are denoted with parenth
ses, e.g.,

(1, 2.0, ‘x’, y’)
Climate Data Management System

A first example

ra-
lts to
gi-
2.2 A first example

The following Python script reads January and July monthly tempe
ture data from an input dataset, averages over time, and writes the resu
an output file. The input temperature data is ordered (time, latitude, lon
tude).

 1 #!/usr/local/bin/python
 2 import cdms, Numeric
 3 jones = cdms.openDataset(’/pcmdi/cdms/obs/jones_mo.xml’,’r’)
 4 tasvar = jones.variables[’tas’]
 5 jans = tasvar[0::12]
 6 julys = tasvar[6::12]
 7 janavg = Numeric.avg.reduce(jans)
 8 julyavg = Numeric.avg.reduce(julys)
 9 out = cdms.createDataset(’janjuly.nc’)
10 grid = tasvar.getGrid()
11 outgrid = out.copyGrid(grid)
12 janvar = out.createVariable(’tas_jan’, cdms.CdFloat,

(outgrid,))
13 julyvar = out.createVariable(’tas_jul’, cdms.CdFloat,

(outgrid,))
14 janvar.units = julyvar.units = "K"
15 janvar.long_name = "mean January surface temperature"
16 julyvar.long_name = "mean July surface temperature"
17 janvar[:] = janavg
18 julyvar[:] = julyavg
19 jones.close()
20 out.close()

Line Notes

 2 Makes the CDMS and Numeric modules available.

 3 Opens the input dataset, read-only. The.xml file is an ASCII file
which describes the data files in the dataset. The resultjones is a
dataset object.
Climate Data Management System 15

CDMS Python Application Programming Interface

16

d-
ta
e

 4 Gets the surface air temperature variable.‘tas’ is the name of the
variable in the input dataset.jones.variables is a Python dictio-
nary, which maps the variable name (‘tas’) to the variable object
(tasvar).

 5 Reads all January monthly mean data into a Numeric arrayjans .
Variables can be sliced as if they were Numeric arrays. The slice
operator[0::12] means ‘take every 12th slice from dimension 0,
starting at index 0 and ending at the last index.’ If the stride12 were
omitted, it would default to 1.

Note that the variable is actually 3-dimensional. Since no slice is
specified for the second or third dimensions, all values of those
dimensions are retrieved. The slice could also have been written
[0::12, : , :] .

Also note that the data may be read from multiple data files, depen
ing on the organization of the dataset. CDMS opens the needed da
files, extracts the appropriate slices, and concatenates them into th
result array as necessary.

 6 Reads all July data into a Numeric arrayjulys .

 7 Averagesjans across the first array dimension, time. The result is a
function of latitude and longitude.

 8 Averagesjulys across time.

 9 Creates a new netCDF output file named‘janjuly.nc’ to hold the
results.

10 Gets the grid objectgrid associated withtasvar , contained in the
input dataset.

11 Copiesgrid to the output file.outgrid is a grid object contained in
the output file.

Line Notes
Climate Data Management System

cdms module

nd

o

.

f a
2.3 cdms module

Thecdms module is the Python interface to CDMS. The objects a
methods in this chapter are made accessible with the command:

import cdms

The functions described in this section are not associated with a class.
Rather, they are called as module functions, e.g.,

12 Creates a variablejanvar in the output file, as a function of the out-
put grid. Its identifier in the output file is the string‘tas_jan’ . The
last argument is a tuple of the grids and/or axes which define the
domain of the variable. Note that as yet no data has been written t
the file.

13 Creates a new variablejulyvar in the output file.

14 Creates a.units attribute for both variables, and writes the string
value‘K’ to the output file. There is nothing special about.units ;
any attribute can be created and written in similar fashion.

Global attributes are written by setting an attribute of the file object

17 Writes the January average data to the output file. Setting a slice o
variable writes data to that variable. In this case, the slice [:] refer-
ences all data for the variable.

18 Writes July average data to the output file.

19 Closes the input dataset.

20 Closes the output file.

Line Notes
Climate Data Management System 17

CDMS Python Application Programming Interface

18

.

-

-

file = cdms.createDataset(‘sample.nc’)

Table 2.2 cdms module functions

Type Definition

Axis createAxis(data, bounds=None):

Create an Axis, which is not associated with a file or dataset
This is useful for creating a grid which is not contained in a
file or dataset.

data is a one-dimensional, monotonic Numeric array.

bounds is an array of shape (len(data),2), such that for all i,
data[i] is in the range [bounds[i,0],bounds[i,1]].

Also see: CdmsFile.createAxis

Dataset
or
CdmsFile

createDataset(path,template=None)

Create a Dataset or CdmsFile.(Note: Only CdmsFile cre-
ation is implemented at present.)

pathis the XML file name, or netCDF filename for simple file
create. If the path extension is '.xml' or '.cdml', a Dataset is cre
ated. Otherwise a netCDF CdmsFile is created.

template is a string filename template for the datafile(s), for
dataset creation. This argument should be omitted for Cdms
File creation.

Example: Create a new netCDF file.

file = cdms.createDataset(‘sample.nc’)

Axis createEqualAreaAxis(nlat)

Create an equal-area latitude axis. The latitude values range
from north to south, and for all axis values x[i], sin(x[i])-
sin(x[i+1]) is constant.

nlat is the axis length.

The axis is not associated with a file or dataset.
Climate Data Management System

cdms module

h

Axis createGaussianAxis(nlat)

Create a Gaussian latitude axis. Axis values range from nort
to south.

nlat is the axis length.

The axis is not associated with a file or dataset.

RectGrid createGenericGrid(latArray, lonArray, lat-
Bounds=None, lonBounds=None, order="yx",
mask=None)

Create a generic grid, that is, a grid which is not typed as
Gaussian, uniform, or equal-area. The grid is not associated
with a file or dataset.

latArray is a NumPy array of latitude values.

lonArray is a NumPy array of longitude values

latBoundsis a NumPy array having shape (len(latArray),2), of
latitude boundaries.

lonBounds is a NumPy array having shape (len(lonArray),2),
of longitude boundaries.

order is a string specifying the order of the axes, either “yx”
for (latitude, longitude), or “xy” for the reverse.

mask (optional) is an integer-valued NumPy mask array, hav-
ing the same shape and ordering as the grid.

RectGrid createGlobalMeanGrid(grid)

Generate a grid for calculating the global mean via a regrid-
ding operation. The return grid is a single zone covering the
range of the input grid.

grid is a RectGrid.

Table 2.2 cdms module functions

Type Definition
Climate Data Management System 19

CDMS Python Application Programming Interface

20

.

s

RectGrid createRectGrid(lat, lon, order, type="generic",
mask=None)

Create a rectilinear grid, not associated with a file or dataset
This might be used as the target grid for a regridding opera-
tion.

lat is a latitude axis, created by cdms.createAxis.

lon is a longitude axis, created by cdms.createAxis.

order is a string with value “yx” (the first grid dimension is lat-
itude) or “xy” (the first grid dimension is longitude).

type is one of ’gaussian’,’uniform’,’equalarea’,or ’generic’

If specified,maskis a two-dimensional, logical Numeric array
(all values are zero or one) with the same shape as the grid.

RectGrid createUniformGrid(startLat, nlat, deltaLat, start-
Lon, nlon, deltaLon, order="yx", mask=None)

Create a uniform rectilinear grid. The grid is not associated
with a file or dataset. The grid boundaries are at the midpoint
of the axis values.

startLat is the starting latitude value.

nlat is the number of latitudes.

deltaLat is the increment between latitudes.

startLon is the starting longitude value.

nlon is the number of longitudes.

deltaLon is the increment between longitudes.

order is a string with value “yx” (the first grid dimension is lat-
itude) or “xy” (the first grid dimension is longitude).

If specified,maskis a two-dimensional, logical Numeric array
(all values are zero or one) with the same shape as the grid.

Table 2.2 cdms module functions

Type Definition
Climate Data Management System

cdms module

u-

l-

e
u-
Axis createUniformLatitudeAxis(startLat, nlat, deltaLat)

Create a uniform latitude axis. The axis boundaries are at the
midpoints of the axis values. The axis is designated as a circ
lar latitude axis.

startLat is the starting latitude value.

nlat is the number of latitudes.

deltaLat is the increment between latitudes.

RectGrid createZonalGrid(grid)

Create a zonal grid. The output grid has the same latitude as
the input grid, and a single longitude. This may be used to ca
culate zonal averages via a regridding operation.

grid is a RectGrid.

Axis createUniformLongitudeAxis(startLon, nlon, delta-
Lon)

Create a uniform longitude axis. The axis boundaries are at th
midpoints of the axis values. The axis is designated as a circ
lar longitude axis.

startLon is the starting longitude value.

nlon is the number of longitudes.

deltaLon is the increment between longitudes.

Table 2.2 cdms module functions

Type Definition
Climate Data Management System 21

CDMS Python Application Programming Interface

22

t

Dataset
or
CdmsFile

openDataset(url,mode='r',template=None)

Open or create a Dataset or CdmsFile.

url is a Uniform Resource Locator, referring to a cdunif or
XML file. If the URL has the extension '.xml' or '.cdml', a
Dataset is returned, otherwise a CdmsFile is returned. If the
URL protocol is 'http', the file must be a '.xml' or '.cdml' file,
and the mode must be 'r'. If the protocal is 'file' or is omitted, a
local file or dataset is opened.

mode is the open mode. See Table 2.22 on page 49.

templateis a string file template for the datafile(s), for dataset
creation. This argument should be omitted except for Datase
creation.

Example:

f = cdms.openDataset(“sampleset.xml”)

None setAutoBounds(mode)

Set autobounds mode.

If mode is ’on’ (the default), getBounds will automatically
generate boundary information for an axis or grid, if the
boundaries are not explicitly defined.

If modeis’off’, and no boundary data is explicitly defined, the
bounds will NOT be generated; getBounds will return None
for the boundaries.

Table 2.2 cdms module functions

Type Definition
Climate Data Management System

cdms module

d

o

-

None setAutoReshapeMode(mode)

If mode is ‘on’, remove singleton dimensions from all arrays
returned by slice operators orVariable.getRegion(). The
default mode is ‘off’. The autoreshape mode may be change
at any time.

Note: Enabling autoreshape causes non-contiguous arrays t
be copied to contiguous arrays. This will incur some CPU
overhead.

Example: Enable autoreshape mode.

cdms.setAutoReshapeMode(‘on’)

None setClassifyGrids(mode)

Set grid classifiction mode. This affects how grid type is deter
mined, for the purpose of generating grid boundaries.

If mode is ‘on’ (the default), grid type is determined by a grid
classification method, regardless of the value of grid.get-
Type().

If mode is ’off’, the value of grid.getType() determines the
grid type

Table 2.3 Class Tags

Tag Class

'axis' Axis

‘database’ Database

'dataset' Dataset, CdmsFile

'grid' RectGrid

'variable' Variable

'xlink' Xlink

Table 2.2 cdms module functions

Type Definition
Climate Data Management System 23

CDMS Python Application Programming Interface

24

e
.
e

tes
tent
2.4 CdmsObj

A CdmsObj is the base class for all CDMS database objects. At th
application level, CdmsObj objects are never created and used directly
Rather the subclasses of CdmsObj (Dataset, Variable, Axis, etc.) are th
basis of user application programming.

All objects derived from CdmsObj have a special attribute.attributes. This
is a Python dictionary, which contains all the external (persistent) attribu
associated with the object. This is in contrast to the internal, non-persis
attributes of an object, which are built-in and predefined.

Example: get a list of all external attributes of obj.

extatts = obj.attributes.keys()

All attributes may be accessed and set using the Python dot notation (‘.’)

Table 2.4 Attributes common to all CDMS objects

Type Name Definition

Dictionary attributes External attribute dictionary for this object.

Table 2.5 Getting and setting attributes

Type Definition

Various value = obj.attname

Get an internal or external attribute value. If the attribute
is external, it is read from the database. If the attribute is not
already in the database, it is created as an external attribute.
Internal attributes cannot be created, only referenced.
Climate Data Management System

Axis

 to
s

hat
ost
2.5 Axis

An Axis is a one-dimensional coordinate object.

An Axis is contained in a Dataset. Setting a slice of an Axis writes data
the Dataset, referencing an Axis slice reads data from the Dataset. Axi
objects are also used to define the domain of a Variable.

An axis in a CdmsFile may be designated the ‘unlimited’ axis, meaning t
it can be extended in length after the initial definition. There can be at m
one unlimited axis associated with a CdmsFile.

obj.attname = value

Set an internal or external attribute value. If the attribute
is external, it is written to the database.

Table 2.6 Axis Internal Attributes

Type Name Definition

Dictionary attributes External attribute dictionary.

String id Axis identifer.

Dataset parent The dataset which contains the variable.

Tuple shape The length of each axis.

Table 2.5 Getting and setting attributes

Type Definition
Climate Data Management System 25

CDMS Python Application Programming Interface

26

 on

.
a-
Table 2.7 Axis Constructors

cdms.createAxis(data, bounds=None)

Create an axis which is not associated with a dataset or file. See Table 2.2
page 18.

Dataset.createAxis(name,ar)

Create an Axis in a Dataset. (This function is not yet implemented.)

CdmsFile.createAxis(name,ar,unlimited=0)

Create an Axis in a CdmsFile.

name is the string name of the Axis.

ar is a 1-D data array which defines the Axis values. It may have the value
None if an unlimited axis is being defined.

At most one Axis in a CdmsFile may be designated as being ‘unlimited’,
meaning that it may be extended in length. To define an axis as unlimited,
either:

• set ar to None, and leaveunlimited undefined, or

• set ar to the initial 1-D array, and setunlimited to cdms.Unlimited

Table 2.8 Axis Methods

Type Method Definition

Array array = axis[i:j]

Read a slice of data from the external dataset. Data is
returned in the physical ordering defined in the dataset
See Table 2.9 on page 32 for a description of slice oper
tors.
Climate Data Management System

Axis
None axis[i:j] = array

Write a slice of data to the external dataset.(axes in
CdmsFiles only)

None assignValue(array)

Set the entire value of the axis.

array is a one-dimensional, Numeric array.

None designateCircular(modulo, persistent=0)

Designate the axis to be circular.

modulois the modulus value. Any given axis value x is treated
as equivalent to x+modulus

If persistentis true, the external file or dataset (if any) is modi-
fied. By default, the designation is temporary.

None designateLatitude(persistent=0):

Designate the axis to be a latitude axis.

If persistentis true, the external file or dataset (if any) is modi-
fied. By default, the designation is temporary.

None designateLevel(persistent=0)

Designate the axis to be a vertical level axis.

If persistentis true, the external file or dataset (if any) is modi-
fied. By default, the designation is temporary.

None designateLongitude(persistent=0, modulo=360.0)

Designate the axis to be a longitude axis.

modulois the modulus value. Any given axis value x is treated
as equivalent to x+modulus

If persistentis true, the external file or dataset (if any) is modi-
fied. By default, the designation is temporary.

Table 2.8 Axis Methods

Type Method Definition
Climate Data Management System 27

CDMS Python Application Programming Interface

28

-

e

-

None designateTime(persistent=0, calendar = cdtime.Gre-
gorianCalendar)

Designate the axis to be a time axis.

If persistentis true, the external file or dataset (if any) is modi-
fied. By default, the designation is temporary.

calendar is defined as ingetCalendar().

Array getBounds()

Get the associated boundary array. The boundary array has
shape (n,2), where n is the length of the axis.

If a boundary array is not explicitly defined and autoBounds
mode is on, a default array is generated by calling genGener
icBounds. Otherwise if autoBounds mode is off, the return
value is None. SeesetAutoBoundsMode.

Integer getCalendar()

Returns the calendar associated with the (time) axis. Possibl
return values, as defined in the cdtime module, are:

• cdtime.GregorianCalendar: the standard Gregorian calen
dar

• cdtime.JulianCalendar: years divisible by 4 are leap years

• cdtime.NoLeapCalendar: a year is 365 days

• cdtime.Calendar360: a year is 360 days

• None: no calendar can be identified

Note: If the axis is not a time axis, the global, file-related cal-
endar is returned.

Array getValue()

Get the entire axis vector.

Table 2.8 Axis Methods

Type Method Definition
Climate Data Management System

Axis
Integer isCircular()

Returns true if the axis has circular topology.

An axis is defined as circular if:

• axis.topology==’circular’, or

• axis.topology is undefined, and the axis is a longitude
The default cycle for circular axes is 360.0

Integer isLatitude()

Returns true iff the axis is a latitude axis.

Integer isLevel()

Returns true iff the axis is a level axis.

Integer isLinear()

Returns true iff the axis has a linear representation.

Integer isLongitude()

Returns true iff the axis is a longitude axis.

Integer isTime()

Returns true iff the axis is a time axis.

Integer len(axis)

The length of the axis.

Table 2.8 Axis Methods

Type Method Definition
Climate Data Management System 29

CDMS Python Application Programming Interface

30

e

f

Tuple mapInterval(interval)

Map a coordinate interval to an index interval.

interval is a tuple having one of the forms:

 (x,y)
 (x,y,indicator)
 (x,y,indicator,cycle)
 None or ‘:’

wherex andy are coordinates indicating the interval
[x,y), and:

indicator is a two-character string, where the first char-
acter is 'c' if the interval is closed on the left, 'o' if open,
and the second character has the same meaning for th
right-hand point. (Default: ‘co’)

If cycle is specified, the axis is treated as circular with
the given cycle value. By default, if axis.isCircular() is
true, the axis is treated as circular with a default value o
360.0.

An interval of None or ‘:’ returns the full index interval
of the axis.

(continued)

Table 2.8 Axis Methods

Type Method Definition
Climate Data Management System

Axis

s

t
].
(mapInterval, continued)

The method returns the corresponding index interval
[i,j), where i<j, indicating the half-open index interval
i<=k<j, or None if the intersection is empty. Note: if the
interval is interior to the axis, but does not span any axi
element, a singleton (i,i+1) indicating an adjacent index
is returned.

For an axis which is circular (axis.topology == 'circu-
lar'), [i,j) is interpreted as follows (where N = len(axis)):

• if j <= N, the interval does not wrap around the axis end-
point

• if j > N, the interval wraps around, and is equivalent to the
two consecutive index intervals [i,N), [0,j-N)

See also: Variable.getRegion()

None setBounds(bounds, persistent=0)

Set the boundary array.

boundsis a NumPy array bnds of shape (len(axis),2), such tha
the boundaries of the nth axis value are [bnds[n,0],bnds[n,1]

Note: By default, the boundaries are not written to the file or
dataset containing the axis (if any). This allows bounds to be
set on read-only files, for regridding. If the optional argument
persistent is set to 1, the boundary array is written to the file.

None setCalendar(calendar, persistent=1)

Set the calendar for this (time) axis.

calendar is defined as in getCalendar().

If persistentis true, the external file or dataset (if any) is modi-
fied. This is the default.

Table 2.8 Axis Methods

Type Method Definition
Climate Data Management System 31

CDMS Python Application Programming Interface

32

p-

t

j

Example: A longitude axis has value [0.0, 2.0, ..., 358.0], of length 180.
Map the coordinate interval -5.0 <= x < 5.0 to index interval(s), with wra
around. The result index interval 178<=k<183 wraps around, since
180<183. This is equivalent to the two index intervals 178<=k<180 and
0<=k<3

> axis.isCircular()
1
> axis.mapInterval((-5.0,5.0))
(178,183)
>

Axis subaxis(i,j)

Create an axis associated with the integer range [i:j]. The
result axis is not associated with a file or dataset.

String typecode()

The Numeric datatype identifier.

Table 2.9 Axis Slice Operators

Slice Definition

[i] The ith element, starting with index 0

[i:j] The ith element through, but not including, element j

[i:] The ith element through and including the end

[:j] The beginning element through, but not including, elemen
j

[:] The entire array

[i:j:k] Every kth element, starting at i, through but not including

[-i] The ith element from the end. -1 is the last element.

Table 2.8 Axis Methods

Type Method Definition
Climate Data Management System

CdmsFile

,

2.6 CdmsFile

A CdmsFile is a physical file, accessible via the cdunif interface.
netCDF files are accessible in read-write mode. All other formats (DRS
HDF, GrADS/GRIB, POP, QL) are accessible read-only.

Table 2.10 CdmsFile Internal Attributes

Type Name Definition

Dictionary attributes Global, external file attributes

Dictionary axes Axis objects contained in the file.

Dictionary grids Grids contained in the file.

String id File pathname.

Dictionary variables Variables contained in the file.

Table 2.11 CdmsFile Constructors

cdms.openDataset(path, mode)

Open the file specified by path.

path is the file pathname, a string.

mode is the open mode indicator, as listed in Table 2.22 on page 49.

cdms.createDataset(path)

Create the file specified bypath, a string.
Climate Data Management System 33

CDMS Python Application Programming Interface

34

o

t

s.
Table 2.12 CdmsFile Methods

Type Definition

None close()

Close the file.

Axis copyAxis(axis, newname=None)

Copy axis values and attributes to a new axis in the file. The
returned object is persistent: it can be used to write axis data t
or read axis data from the file. If an axis already exists in the
file, having the same name and coordinate values, it is
returned. It is an error if an axis of the same name exists, bu
with different coordinate values.

axis is the axis object to be copied.

newname, if specified, is the string identifier of the new axis
object. If not specified, the identifier of the input axis is used.

Grid copyGrid(grid, newname=None)

Copy grid values and attributes to a new grid in the file. The
returned grid is persistent. If a grid already exists in the file,
having the same name and axes, it is returned. An error is
raised if a grid of the same name exists, having different axe

grid is the grid object to be copied.

newname, if specified is the string identifier of the new grid
object. If unspecified, the identifier of the input grid is used.

Axis createAxis(String id, Array ar, Integer unlimited=0)

Create a new Axis. This is a persistent object which can be
used to read or write axis data to the file.

ar is the one-dimensional axis array.

Setunlimited to cdms.Unlimited to indicate that the axis is
extensible.
Climate Data Management System

CdmsFile

e

RectGrid createRectGrid(id, lat, lon, order, type="generic",
mask=None)

Create a RectGrid in the file. This is not a persistent object: the
order, type, and mask are not written to the file. However, the
grid may be used for regridding operations.

lat is a latitude axis in the file.

lon is a longitude axis in the file.

order is a string with value “yx” (the first grid dimension is lat-
itude) or “xy” (the first grid dimension is longitude).

type is one of ’gaussian’,’uniform’,’equalarea’,or ’generic’

If specified,maskis a two-dimensional, logical Numeric array
(all values are zero or one) with the same shape as the grid.

Variable createVariable(String id, String datatype,List axes)

Create a new Variable. This is a persistent object which can b
used to read or write variable data to the file.

id is a String name which is unique with respect to all other
objects in the file.

datatype is a CDMS datatype, as listed in Table 2.13 on
page 36.

axes is a list of Axis and/or Grid objects.

Variable createVariableCopy(var, newname=None)

Create a new Variable, with the same name, axes, and
attributes as the input variable. An error is raised if a variable
of the same name exists in the file.

var is the Variable to be copied.

newname, if specified is the name of the new variable. If
unspecified, the returned variable has the same name asvar.

Note: Unlike copyAxis, the actual data is not copied to the new
variable.

Table 2.12 CdmsFile Methods

Type Definition
Climate Data Management System 35

CDMS Python Application Programming Interface

36

t
at
2.7 Database

A Database is a collection of datasets and other CDMS objects. I
consists of a hierarchical collection of objects, with the database being
the root, or top of the hierarchy. A database is used to:

• search for metadata

• access data

• provide authentication and access control for data and metadata

The figure below illustrates several important points:

• Each object in the database has arelative nameof the formtag=id. The id of an
object is unique with respect to all objects contained in the parent.

None sync()

Writes any pending changes to the file.

Table 2.13 CDMS Datatypes

CDMS
Datatype Definition

CdChar character

CdDouble double-precision floating-point

CdFloat floating-point

CdInt integer

CdLong long integer

CdShort short integer

Table 2.12 CdmsFile Methods

Type Definition
Climate Data Management System

Database

n the

in

r

ase
• Thename of the object consists of its relative name followed by the relative
name(s) of its antecedent objects, up to and including the database name. I
figure below, one of the variables has name

“variable=ua, dataset=ncep_reanalysis_mo,database=CDMS”.

• Subordinate objects are thought of as being contained in the parent. In this
example, the database ‘CDMS’ contains two datasets, each of which conta
several variables.

2.7.1 Overview

To access a database:

1. Open a connection. Theconnectmethod opens a database connection.connect
takes a database URI and returns a database object:
db = cdms.connect(“ldap://dbhost.llnl.gov/

database=CDMS,ou=PCMDI,o=LLNL,c=US”)

2. Search the database, locating one or more datasets, variables, and/or othe
objects.

The databasesearchFilter method searches the database. A single datab
connection may be used for an arbitrary number of searches.

For example, to find all observed datasets:

result = db.searchFilter("category=observed",tag=”dataset”)

dataset=ncep_reanalysis_mo

variable=ua variable=va

dataset=ecmwf_reanalysis_mo

variable=ua variable=va

database=CDMS
Climate Data Management System 37

CDMS Python Application Programming Interface

38

mple

ed

entry
sist-

the

the
Searches can be restricted to a subhierarchy of the database. This exa
searches just the dataset ‘ncep_reanalysis_mo’:

result = db.searchFilter(relbase=”dataset=ncep_reanalysis”)

3. Refine the search results if necessary. The result of a search can be narrow
with thesearchPredicate method.

4. Process the results. A search result consists of a sequence of entries. Each
has a name, the name of the CDMS object, and an attribute dictionary, con
ing of the attributes located by the search:
for entry in result:

print entry.name, entry.attributes

5. Access the data. The CDMS object associated with an entry is obtained from
getObject method:
obj = entry.getObject()

If the id of a dataset is known, the dataset can be opened directly with
openDataset method:

dset = db.openDataset(“ncep_reanalysis_mo”)

6. Close the database connection:
db.close()

Table 2.14 Database Internal Attributes

Type Name Summary

Dictionary attributes Database attribute dictionary

LDAP db (LDAP only) LDAP database object

String netloc Hostname, for server-based databases

String path path name

String uri Uniform Resource Identifier.
Climate Data Management System

Database

RI
y

ed

.

n-
Table 2.15 Database Constructors

db = cdms.connect(uri=None, user="", password="")

Connect to the database.

uri is the Universal Resource Indentifier of the database. The form of the U
depends on the implementation of the database. For a Lightweight Director
Access Protocol (LDAP) database, the form is:

ldap:// host [: port]/ dbname

For example, if the database is located on host ‘dbhost.llnl.gov’, and is nam
‘database=CDMS,ou=PCMDI,o=LLNL,c=US’, the URI is:

ldap://dbhost.llnl.gov/database=CDMS,ou=PCMDI,o=LLNL,c=US

If unspecified, the URI defaults to the value of environment variable
CDMSROOT.

user is the user ID. If unspecified, an anonymous connection is made

passwordis the user password. A password is not required for an ano
ymous connection.

Table 2.16 Database Methods

Type Definition

None close()

Close a database connection.
Climate Data Management System 39

CDMS Python Application Programming Interface

40
Dataset openDataset(dsetid, mode=’r’)

Open a dataset.

dsetid is the string dataset identifier

mode is the open mode, ’r’ - read-only, ’r+’ - read-write, ’w’ -
create.

Table 2.16 Database Methods

Type Definition
Climate Data Management System

Database

w

the
SearchResult searchFilter(filter=None, tag=None, relbase=None,
scope=Subtree, attnames=None, timeout=None)

Search a CDMS database.

filter is the string search filter. Simple filters have the form "tag
= value". Simple filters can be combined using logical opera-
tors ’&’, ’|’, ’!’ in prefix notation. For example, the filter
’(&(objectclass=variable)(id=cli))’ finds all variables named
“cli”. A formal definition of search filters is provided in the
following section.

tag restricts the search to objects with that tag ("dataset" |
"variable" | "database" | "axis" | "grid").

relbaseis the relative name of the base object of the search.
The search is restricted to the base object and all objects belo
it in the hierarchy. For example, to search only dataset
‘ncep_reanalysis_mo’, specify:

relbase=”dataset=ncep_reanalysis_mo”.

To search only variable ‘ua’ in ncep_reanalysis_mo, use:

relbase=”variable=ua,
dataset=ncep_reanalysis_mo”

If no base is specified, the entire database is searched. See
scope argument also.

scopeis the search scope (Subtree| Onelevel| Base). Subtree
searches the base object and its descendants.Onelevel
searches the base object and its immediate descendants.Base
searches the base object alone. The default isSubtree.

attnames: list of attribute names. Restricts the attributes
returned. If None, all attributes are returned. Attributes ‘id’
and ‘objectclass’ are always included in the list.

timeout: integer number of seconds before timeout. The
default is no timeout.

Table 2.16 Database Methods

Type Definition
Climate Data Management System 41

CDMS Python Application Programming Interface

42

is

the

n-
2.7.2 Searching a database

ThesearchFilter method is used to search a database. The result
called asearch result, and consists of a sequence ofresult entries.

In its simplest form,searchFilter takes an argument consisting of a string
filter. The search returns a sequence of entries, corresponding to those
objects having an attribute which matches the filter. Simple filters have
form (tag = value), wherevalue can contain wildcards. For example:

‘(id = ncep*)’
‘(project = AMIP2)’

Simple filters can be combined with the logical operators ‘&’, ‘|’, ‘!’. For
example,

‘(&(id = bmrc*)(project = AMIP2))’

matches all objects with id starting with ‘bmrc’, and a ‘project’ attribute
with value ‘AMIP2’.

Formally, search filters are strings defined as follows:

filter ::= "(" filtercomp ")"
filtercomp ::= "&" filterlist | # and

"|" filterlist | # or
"!" filterlist | # not
simple

filterlist ::= filter | filter filterlist
simple ::= tag op value
op ::= "=" | # equality

"~=" | # approximate equality
"<=" | # lexicographically less than or equal to
">=" # lexicographically greater than or equal to

tag ::= string attribute name
value ::= string attribute value, may include ’*’ as a wild card

Attribute names are defined in the chapter on “Climate Data Markup La
guage (CDML)” on page 91. In addition, some special attributes are
defined for convenience:

• category is either “experimental” or “observed”

• parentid is the ID of the parent dataset
Climate Data Management System

Database

ry
rem-

the

etc.)

ned
• project is a project identifier, e.g., “AMIP2”

• objectclass is the list of tags associated with the object.

The set of objects searched is called the searchscope. The top object in the
hierarchy is thebase object. By default, all objects in the database are
searched, that is, the database is the base object. If the database is ve
large, this may result in an unnecessarily slow or inefficient search. To
edy this the search scope can be limited in several ways:

• The base object can be changed.

• The scope can be limited to the base object and one level below, or to just
base object.

• The search can be restricted to objects of a given class (dataset, variable,

• The search can be restricted to return only a subset of the object attributes

• The search can be restricted to the result of a previous search.

A search result is accessed sequentially within a for loop:

result = db.searchFilter(’(&(category=obs*)(id=ncep*))’)
for entry in result:

print entry.name

Search results can be narrowed usingsearchPredicate. In the following
example, the result of one search is itself searched for all variables defi
on a 94x192 grid:

>>> result = db.searchFilter(’parentid=ncep*’,tag="variable")
>>> len(result)
65
>>> result2 = result.searchPredicate(lambda x:

x.getGrid().shape==(94,192))
>>> len(result2)
3
>>> for entry in result2: print entry.name
variable=rluscs,dataset=ncep_reanalysis_mo,database=CDMS,ou=PCMDI,

o=LLNL, c=US
variable=rlds,dataset=ncep_reanalysis_mo,database=CDMS,ou=PCMDI,

o=LLNL, c=US
variable=rlus,dataset=ncep_reanalysis_mo,database=CDMS,ou=PCMDI,

o=LLNL, c=US
>>>
Climate Data Management System 43

CDMS Python Application Programming Interface

44

ame,
ary.
 the
y. In

 a
A search result is a sequence of result entries. Each entry has a string n
the name of the object in the database hierarchy, and an attribute diction
An entry corresponds to an object found by the search, but differs from
object, in that only the attributes requested are associated with the entr
general, there will be much more information defined for the associated
CDMS object, which is retrieved with thegetObject method.

Table 2.17 SearchResult Methods

Type Definition

ResultEntry [i]

Return the i-th search result. Results can also be returned in
for loop:

for entry in db.searchResult(tag="dataset"):
...

Integer len()

Number of entries in the result.

SearchResult searchPredicate(predicate, tag=None)

Refine a search result, with a predicate search.

predicate is a function which takes a single CDMS object and
returns true (1) if the object satisfies the predicate, 0 if not.

tag restricts the search to objects of the class denoted by the
tag.

Note: In the current implementation,searchPredicateis much
less efficient thansearchFilter. For best performance, use
searchFilter to narrow the scope of the search, then use
searchPredicate for more general searches.
Climate Data Management System

Database

ss
-

2.7.3 Accessing data

To access data via CDMS:

1. Locate the dataset ID. This may involve searching the metadata.

2. Open the dataset, using the openDataset method.

3. Reference the portion of the variable to be read.

In the next example, a portion of variable ‘ua’ is read from dataset
‘ncep_reanalysis_mo’:

dset = db.openDataset(‘ncep_reanalysis_mo’)
ua = dset.variables[‘ua’]
data = ua[0,0]

Table 2.18 ResultEntry Attributes

Type Name Summary

String name The name of this entry in the database.

Dictionary attributes The attributes returned from the search.

attributes[key] is a list of all string values asso-
ciated with the key.

Table 2.19 ResultEntry Methods

Type Definition

CdmsObj getObject()

Return the CDMS object associated with this entry.

Note: For many search applications it is unnecessary to acce
the associated CDMS object. For best performance this func
tion should be used only when necessary, for example, to
retrieve data associated with a variable.
Climate Data Management System 45

CDMS Python Application Programming Interface

46

OT.
2.7.4 Examples of database searches

In the following examples,db is the database opened with

db = cdms.connect()

This defaults to the database defined in environment variable CDMSRO

List all variables in dataset ‘ncep_reanalysis_mo’:

for entry in db.searchFilter(filter="parentid=ncep_reanalysis_mo",
tag="variable"):

 print entry.name

Find all axes with bounds defined:

for entry in db.searchFilter(filter="bounds=*",tag="axis"):
 print entry.name

Locate all GDT datasets:

for entry in
db.searchFilter(filter="Conventions=GDT*",tag="dataset"):

 print entry.name

Find all variables with missing time values, in observed datasets:

def missingTime(obj):
 time = obj.getTime()
 return time.length != time.partition_length

result = db.searchFilter(filter="category=observed")
for entry in result.searchPredicate(missingTime):
 print entry.name

Find all CMIP2 datasets having a variable with id "hfss":

for entry in
db.searchFilter(filter="(&(project=CMIP2)(id=hfss))",tag="var
iable"):

 print entry.getObject().parent.id
Climate Data Management System

Dataset
Find all observed variables on 73x144 grids:

result = db.searchFilter(’category=obs*’)
for entry in result.searchPredicate(lambda x:

x.getGrid().shape==(73,144),tag="variable"):
 print entry.name

Find all observed variables with more than 1000 timepoints:

result = db.searchFilter(’category=obs*’)
for entry in result.searchPredicate(lambda x: len(x.getTime())>1000,

tag="variable"):
 print entry.name, len(entry.getObject().getTime())

Find the total number of each type of object in the database

print len(db.searchFilter(tag="database")),"database"
print len(db.searchFilter(tag="dataset")),"datasets"
print len(db.searchFilter(tag="variable")),"variables"
print len(db.searchFilter(tag="axis")),"axes"

2.8 Dataset

A Dataset is a virtual file. It consists of a metafile, in CDML/XML repre-
sentation, and one or more data files.

Table 2.20 Dataset Internal Attributes

Type Name Summary

Dictionary attributes Dataset external attributes.

Dictionary axes Axes contained in the dataset.

String datapath Path of data files, relative to the parent data-
base. If no parent, the datapath is absolute.

Dictionary grids Grids contained in the dataset.
Climate Data Management System 47

CDMS Python Application Programming Interface

48

le.

the
on

e
ec-
String id Dataset identifier.

String mode Open mode.

Database parent Database which contains this dataset. If the
dataset is not part of a database, the value is
None.

String uri Uniform Resource Identifier of this dataset.

Dictionary variables Variables contained in the dataset.

Dictionary xlinks External links contained in the dataset.

Table 2.21 Dataset Constructors

cdms.openDataset(String uri, String mode='r')

Open the dataset specified by the Universal Resource Indicator, a CDML fi
mode is one of the indicators listed in Table 2.22 on page 49.

cdms.createDataset(String path, String directory, String fileTem-
plate)

(Note: this function is not yet implemented)

Create a new dataset.path is the filepath of a CDML file.fileTemplate
describes how the dataset is to be partitioned. It is a pathname, relative to
directory, which contains zero or more template specifiers (see Table 2.23
page 49). A template may contain directory names as well as file names. A
template specifier is a string of the form '%X' or '%eX', where X is one of th
characters listed Table 2.23 on page 49. The form '%eX' may be used to sp
ify the end time or level value. A specifier may appear more than once in a
template.

Table 2.20 Dataset Internal Attributes

Type Name Summary
Climate Data Management System

Dataset
Table 2.22 Open Modes

Mode Definition

 'r' read-only

'r+' read-write

'a' read-write. Open the file if it exists, otherwise create a
new file

'w' Create a new file, read-write

Table 2.23 Template Specifiers

Specifier Definition Example

d day number 1 .. 31

g month, lower case, three char-
acters

'jan', 'feb', ...

G month, upper case, three
characters

'JAN', 'FEB', ...

H hour 0 .. 23

L vertical level integer

m month number, not zero filled 1 .. 12

M minute 0 .. 59

n month number, two-digit,
zero-filled

01, 02, ..., 12

S second 0 .. 59

v variable ID character

y year, two-digit, zero-filled integer

Y year integer

z Zulu time ex: '6Z19990201'

% percent sign '%'
Climate Data Management System 49

CDMS Python Application Programming Interface

50

th

t:
-

 For example, the file template

ccsr-a/mo/%v/ccsr-a/%v_ccsr-a_%Y.%n-%eY.%en.nc

contains the specifiers%v (variable name),%Y (year),%eY (end year),
and%en (end month). One of the files in the dataset might have the pa
(relative to the parent directory)

ccsr-a/mo/ta/ccsr-a/ta_ccsr-a_1979.01-1979.12.nc

Table 2.24 Dataset Methods

Type Definition

None close()

Close the dataset.

createRectGrid(id, lat, lon, order, type="generic",
mask=None)

Create a RectGrid in the dataset. This is not a persistent objec
the order, type, and mask are not written to the dataset. How
ever, the grid may be used for regridding operations.

lat is a latitude axis in the dataset.

lon is a longitude axis in the dataset.

order is a string with value “yx” (the first grid dimension is lat-
itude) or “xy” (the first grid dimension is longitude).

type is one of ’gaussian’,’uniform’,’equalarea’,or ’generic’

If specified,maskis a two-dimensional, logical Numeric array
(all values are zero or one) with the same shape as the grid.
Climate Data Management System

RectGrid

e. A
a

2.9 RectGrid

A RectGrid is a two-dimensional, horizontal, rectilinear grid. A rectGrid
can be defined in terms of a pair of axes, one longitude and one latitud
two-dimensional, logical mask array may optionally be associated with
rectGrid.

List getPaths()

Get a sorted list of pathnames of datafiles which com-
prise the dataset. This does not include the XML metafile
path, which is stored in the.uri attribute.

None sync()

Write any pending changes to the dataset.

Table 2.25 RectGrid Internal Attributes

Type Name Definition

Dictionary attributes External attribute dictionary.

String id The grid identifier.

Dataset or
CdmsFile

parent The dataset or file which contains the grid.

Tuple shape The shape of the grid, a 2-tuple.

Table 2.24 Dataset Methods

Type Definition
Climate Data Management System 51

CDMS Python Application Programming Interface

52
Table 2.26 RectGrid Constructors

cdms.createRectGrid(lat, lon, order, type="generic", mask=None)

Create a grid not associated with a file or dataset.

See Table 2.2 on page 18.

CdmsFile.createRectGrid(id, lat, lon, order, type="generic",
mask=None)

Create a grid associated with a file. See Table 2.12 on page 34.

Dataset.createRectGrid(id, lat, lon, order, type="generic",
mask=None)

Create a grid associated with a dataset. See Table 2.24 on page 50.

Table 2.27 RectGrid Methods

Type Definition

Axis getAxis(Integer n)

Get the n-th axis.

n is either 0 or 1.
Climate Data Management System

RectGrid
Tuple getBounds()

Get the grid boundary arrays.

Returns a tuple (latitudeArray, longitudeArray), where lati-
tudeArray is a Numeric array of latitude bounds, with shape
(n,2), and longitudeArray is a similar array for longitude
bounds.

If no boundary arrays are explicitly defined (in the file or
dataset), the result depends on the autoBounds mode (see
cdms.setAutoBounds) and the grid classification mode (see
cdms.setClassifyGrids). By default, autoBounds mode is
enabled, in which case the boundary arrays are generated
based on the type of grid. If disabled, the return value is
(None,None).

The grid classification mode specifies how the grid type is to
be determined. By default, the grid type (Gaussian, uniform,
etc.) is determined by callinggrid.classifyInFamily. If the
mode is ‘off’grid.getType is used instead

Axis getLatitude()

Get the latitude axis of this grid.

Axis getLongitude()

Get the latitude axis of this grid.

Array getMask()

Get the mask array of this grid, if any.

Returns a 2-D Numeric array, having the same shape as the
grid. If the mask is not explicitly defined, the return value is
None.

String getOrder()

Get the grid ordering, either “yx” if latitude is the first axis, or
“xy” if longitude is the first axis.

Table 2.27 RectGrid Methods

Type Definition
Climate Data Management System 53

CDMS Python Application Programming Interface

54

s,
s

String getType()

Get the grid type, either “gaussian”, “uniform”, “equalarea”,
or “generic”.

(Array,Arra
y)

getWeights()

Get the normalized area weight arrays, as a tuple (latWeight
lonWeights). It is assumed that the latitude and longitude axe
are defined in degrees.

The latitude weights are defined as:

latWeights[i] = 0.5 * abs(sin(latBounds[i+1]) -
sin(latBounds[i]))

The longitude weights are defined as:

lonWeights[i] = abs(lonBounds[i+1] -
lonBounds[i])/360.0

For a global grid, the weight arrays are normalized such that
the sum of the weights is 1.0

Example: Generate the 2-D weights array, such that
weights[i.j] is the fractional area of grid zone [i,j].

import Numeric
latwts, lonwts = grid.getWeights()
weights = latwts[:,Numeric.NewAxis]*lonwts

Table 2.27 RectGrid Methods

Type Definition
Climate Data Management System

RectGrid

n
d

None setBounds(latBounds, lonBounds, persistent=0)

Set the grid boundaries.

latBounds is a NumPy array of shape (n,2), such that the
boundaries of the kth axis value are [latBounds[k,0],lat-
Bounds[k,1]].

lonBounds is defined similarly for the longitude array.

Note: By default, the boundaries are not written to the file or
dataset containing the grid (if any). This allows bounds to be
set on read-only files, for regridding. If the optional argument
persistent is set to 1, the boundary array is written to the file.

None setMask(mask, persistent=0)

Set the grid mask. If persistent==1, the mask values are writte
to the associated file, if any. Otherwise, the mask is associate
with the grid, but no I/O is generated.

mask is a two-dimensional, Boolean-valued Numeric array,
having the same shape as the grid.

None setType(gridtype)

Set the grid type.

gridtype is one of “gaussian”, “uniform”, “equalarea”, or
“generic”.

Table 2.27 RectGrid Methods

Type Definition
Climate Data Management System 55

CDMS Python Application Programming Interface

56

e

g

t.
RectGrid subGrid((latStart,latStop),(lonStart,lonStop))

Create a new grid, with latitude index range [latStart : latStop]
and longitude index range [lonStart : lonStop]. Either index
range can also be specified as None, indicating that the entir
range of the latitude or longitude is used. For example,

newgrid = oldgrid.subGrid(None, (lonStart, lonStop))

createsnewgrid corresponding to all latitudes, and index range
[lonStart:lonStop] ofoldgrid .

If a mask is defined, the subgrid also has a mask correspondin
to the index ranges.

Note: The result grid is not associated with any file or datase

Table 2.27 RectGrid Methods

Type Definition
Climate Data Management System

RectGrid

e

f

g

t.
RectGrid subGridRegion(latInterval, lonInterval)

Create a new grid corresponding to the coordinate region
defined by latInterval, lonInterval.

latInterval andlonInterval are the coordinate intervals
for latitude and longitude, respectively.

Each interval is a tuple having one of the forms:

 (x,y)
 (x,y,indicator)
 (x,y,indicator,cycle)
 None

wherex andy are coordinates indicating the interval
[x,y), and:

indicator is a two-character string, where the first char-
acter is 'c' if the interval is closed on the left, 'o' if open,
and the second character has the same meaning for th
right-hand point. (Default: ‘co’)

If cycle is specified, the axis is treated as circular with
the given cycle value. By default, if grid.isCircular() is
true, the axis is treated as circular with a default value o
360.0.

An interval of None returns the full index interval of the
axis.

If a mask is defined, the subgrid also has a mask correspondin
to the index ranges.

Note: The result grid is not associated with any file or datase

Table 2.27 RectGrid Methods

Type Definition
Climate Data Management System 57

CDMS Python Application Programming Interface

58

s

ata
aset.

t.

f

2.10 Variable

A Variable is a multidimensional data object. The domain of a variable i
defined in terms of Axis and Grid objects.

A Variable is contained in a Dataset. Setting a slice of a Variable writes d
to the Dataset, and referencing a Variable slice reads data from the Dat

RectGrid transpose()

Create a new grid, with axis order reversed. The grid mask is
also transposed.

Note: The result grid is not associated with any file or datase

Table 2.28 Variable Internal Attributes

Type Name Definition

Dictionary attributes External attribute dictionary.

List domain Axes contained in the dataset. Each element o
the list is itself a tuple of the form

(axis,start,length,true_length)

whereaxis is an axis object,start is the start
index of the domain relative to the axis object,
length is the length of the axis, andtrue_length is
the actual number of (defined) points in the
domain

String id Variable identifier.

String name_in_file The name of the variable in the file or files
which represent the dataset. If different from
id, the variable is ‘aliased’.

Table 2.27 RectGrid Methods

Type Definition
Climate Data Management System

Variable

.

is
Dataset or
CdmsFile

parent The dataset or file which contains the variable

Tuple shape The length of each axis of the variable.

Table 2.29 Variable Constructors

Dataset.createVariable(String id, String datatype, List axes)

Create a Variable in a Dataset.This function is not yet implemented.

CdmsFile.createVariable(String id, String datatype, List axesOr-
Grids)

Create a Variable in a CdmsFile.

id is the name of the variable.

datatype is a CDMS datatype, as defined in Table 2.13 on page 36..

axesOrGridsis a list of Axis and/or Grid objects, on which the variable
is defined. Specifying a rectilinear grid is equivalent to listing the grid
latitude and longitude axes, in the order defined for the grid. Note: th
argument can either be a list or a tuple. If the tuple form is used, and
there is only one element, it must have a following comma, e.g.:
(axisobj,).

Table 2.28 Variable Internal Attributes

Type Name Definition
Climate Data Management System 59

CDMS Python Application Programming Interface

60

d

n

-

Table 2.30 Variable Methods

Type Definition

Array array = var[i:j, m:n]

Read a slice of data from the external dataset. Data is returne
in the physical ordering defined in the dataset. The forms of
the slice operator are listed in Table 2.31 on page 63.

Note: enabling autoReshape mode causes singleton dimen-
sions to be removed from the result array. (Seecdms.setAu-
toReshapeMode.) By default, this mode is off.

var[i:j, m:n] = array

Write a slice of data to the external dataset. The forms of the
slice operator are listed in Table 2.21 on page 32. (Variables i
CdmsFiles only)

None assignValue(Array ar)

Write the entire data array. Equivalent to var[:] = ar. (Variables
in CdmsFiles only).

Axis getAxis(n)

Get the n-th axis.

n is an integer.

Grid getGrid()

Return the associated grid, or None if the variable is not grid
ded.

Axis getLatitude()

Get the latitude axis, or None if not found.

Axis getLevel()

Get the vertical level axis, or None if not found.
Climate Data Management System

Variable

-

.

y

nt-
Axis getLongitude()

Get the longitude axis, or None if not found.

Various getMissing()

Get the missing data value, or None if not found.

String getOrder()

Get the order string of a spatio-temporal variable. The order
string specifies the physical ordering of the data. It is a string
of characters with length equal to the rank of the variable, indi
cating the order of the variable’s time, level, latitude, and/or
longitude axes. Each character is one of:

‘t’: time
‘z’: vertical level
‘y: latitude
‘x’: longitude
‘-’: the axis is not spatio-temporal.

Example: A variable with ordering “tzyx” is 4-dimensional,
where the ordering of axes is (time, level, latitude, longitude)

Note: The order string is of the form required for theorder
argument of a regridder function.

List getPaths(*intervals)

Get the file paths associated with the index region specified b
intervals.

intervals is a list of scalars, 2-tuples representing [i,j), slices,
and/or Ellipses. If no argument(s) are present, all file paths
associated with the variable are returned.

Returns a list of tuples of the form (path,slicetuple), where
path is the path of a file, andslicetuple is itself a tuple of
slices, of the same length as the rank of the variable, represe
ing the portion of the variable in the file corresponding to
intervals.

Table 2.30 Variable Methods

Type Definition
Climate Data Management System 61

CDMS Python Application Programming Interface

62

-

u-
Array getRegion(*region)

Read a region of data. A region is a hyperrectangle in coordi
nate space.

region is an argument list, each item of which specifies an
interval of a coordinate axis. The intervals are listed in the
order of the variable axes. If trailing dimensions are omitted,
all values of those dimensions are retrieved. If an axis is circ
lar (axis.isCircular() is true) or cycle is specified (see below),
then data will be read with wraparound in that dimension.
Only one axis may be read with wraparound.

A coordinate interval has one of the forms listed in Table 2.32
on page 64.

Also seecdms.setAutoReshapeMode.

See examples below.

String getTemplate()

Get the file template associated with this variable. If no tem-
plate is associated with the variable, the dataset template is
returned.

Axis getTime()

Get the time axis, or None if not found.

Array getValue()

Read the entire array. Equivalent to a = var[:]

Integer len(var)

The length of the first dimension of the variable. If the variable
is zero-dimensional (scalar), a length of 0 is returned.

String typecode()

The Numeric datatype identifier.

Table 2.30 Variable Methods

Type Definition
Climate Data Management System

Variable

i-

times

j

Example: Get a region of data.

Variable ta is a function of (time, latitude, longitude). Read data corre-
sponding to all times, latitudes -45.0 up to but not including +45.0, long
tudes 0.0 through and including longitude 180.0:

data = ta.getRegion(‘:’, (-45.0,45.0), (0.0, 180.0, ‘cc’))

In the previous example, assume that times are represented as relative
with units “days since 1979-01-01”. Read all data for 1980:

import cdtime

Convert absolute times 1980-01-01, 1981-01-01 to
relative times with the correct units.

t80 = cdtime.comptime(1980).torel("days since 1979")
t81 = cdtime.comptime(1981).torel("days since 1979")

Read the data for 1980. The interval represents all
times t such that t80 <= t < t81. Also note that
intervals for the trailing dimensions latitude
and time can be omitted.

data = ta.getRegion((t80.value,t81.value))

Table 2.31 Variable Slice Operators

[i] The ith element, zero-origin indexing.

[i:j] The ith element through, but not including, element j

[i:] The ith element through the end

[:j] The beginning element through, but not including, element

[:] The entire array

[i:j:k] Every kth element

[i:j, m:n] Multidimensional slice

[i, ..., m] (Ellipsis) All values of all dimensions between the first and
last

[-1] Negative indices 'wrap around'. -1 is the last element.
Climate Data Management System 63

CDMS Python Application Programming Interface

64

em-

ra-

ince

ree
re

1

2.11 Examples

In this example, two datasets are opened, containing surface air t
perature (‘tas’) and upper-air temperature (‘ta’) respectively. Surface air
temperature is a function of (time, latitude, longitude). Upper-air tempe
ture is a function of (time, level, latitude, longitude). Time is assumed to
have a relative representation in the datasets (e.g., with units “months s
basetime”).

Data is extracted from both datasets for January of the first input year
through December of the second input year. For each time and level, th
quantities are calculated: slope, variance, and correlation. The results a
written to a netCDF file. For brevity, the functions corrCoefSlope and
removeSeasonalCycle are omitted.

import cdms, Numeric

Table 2.32 Coordinate Intervals used in getRegion()

Interval Definition Example

x single point, such that axis[i]==x 180.0

(x,y) indices i such that x <= axis[i] < y (-180,180)

(x,y,'cc') x <= axis[i] <= y
The third item is defined as in
mapInterval.

(-90,90,'cc')

(x,y,'co',cycl
e)

x<= axis[i] < y, with wraparound
Note: It is not necesary to specify
the cycle of a circular longitude
axis, that is, for which axis.isCircu-
lar() is true.

(-180,180,'co',360.0)

':' or None all axis values of one dimension

Ellipsis all values of all intermediate axes
Climate Data Management System

Examples

2

3

4

5

6

7

from cdtime import *

Write slope, correlation, and variance variables
def writeNetCDF(lons,lats,levs,file_name,title,b,c,v):
 file = cdms.createDataset(file_name + ’.nc’)
 file.title = title
 lon_var = file.createAxis(’longitude’, lons)
 lon_var.units = "degrees_east"
 lat_var = file.createAxis(’latitude’, lats)
 lat_var.units = "degrees_north"
 lev_var = file.createAxis(’level’,levs)
 lev_var.units = ’mb’

 foo = file.createVariable(’slope’, cdms.CdDouble, (lev_var, lat_var,
lon_var))

 foo[:] = b
 foo = file.createVariable(’correlation’, cdms.CdDouble, (lev_var, lat_var,

lon_var))
 foo[:] = c
 foo = file.createVariable(’variance’, cdms.CdDouble, (lev_var, lat_var,

lon_var))
 foo[:] = v
 file.close()

def mapTimes(year1, year2, units, calendar):
 time1 = comptime(year1,1).torel(units,calendar).value
 time2 = comptime(year2,12).torel(units,calendar).value
 return time1,time2

Calculate variance, slope, and correlation of surface air tempature
with upper air temperature
by level, and save to a netCDF file. ’pathTa’ is the location of
the CDMS dataset containing ta, ’pathTas’ is the file with contains tas.
Data is extracted from January of year1 through December of year2.
def ccSlopeVarianceBySeasonFiltNet(pathTa,pathTas,year1,year2):

 # Open the files for ta and tas

 fta = cdms.openDataset(pathTa)
 ftas = cdms.openDataset(pathTas)

 # Get upper air temperature and axes

 taObj = fta.variables[’ta’]
 levs = taObj.getLevel()[:]
 lats = taObj.getLatitude()[:]
 lons = taObj.getLongitude()[:]

 # Surface temperature times
 timeObj = ftas.axes[’time’]
 calendar = timeObj.getCalendar()
 if calendar==None: calendar=NoLeapCalendar

 # Get the timepoints corresponding to January of year1,
 # and December of year2.
 time1, time2 = mapTimes(year1,year2,timeObj.units,calendar)

 # Get the surface temperature for the closed interval [time1,time2]
 i1,i2 = timeObj.mapInterval((time1,time2),’cc’)
 tas = ftas.variables[’tas’][i1:i2]

 # assert time_bounds[0] == 1 and time_bounds[1] == 12
Climate Data Management System 65

CDMS Python Application Programming Interface

66

les

8

9

 cc = Numeric.zeros((len(levs),tas.shape[1],tas.shape[2]), Numeric.Float)
 b = Numeric.zeros((len(levs),tas.shape[1],tas.shape[2]), Numeric.Float)
 v = Numeric.zeros((len(levs),tas.shape[1],tas.shape[2]), Numeric.Float)

 # Remove seasonal cycle from surface air temperature
 tas = removeSeasonalCycle(tas)

 # Get correct indices for ta
 timeObj = fta.axes[’time’]
 calendar = timeObj.getCalendar()
 if calendar==None: calendar=cdtime.NoLeapCalendar
 time1, time2 = mapTimes(year1,year2,timeObj.units,calendar)
 i1,i2 = timeObj.mapInterval((time1,time2),’cc’)

 # For each level of air temperature, remove seasonal cycle
 # from upper air temperature, and calculate statistics
 for ilev in range(len(levs)):
 print ’level = ’,ilev, levs[ilev]
 ta = taObj[i1:i2,ilev]

 ta.shape = tas.shape # Ensure that the arrays conform
 ta = removeSeasonalCycle(ta)
 cc[ilev], b[ilev] = corrCoefSlope(tas ,ta)
 v[ilev] = Numeric.add.reduce(ta**2)/(1.0*ta.shape[0])
 file_name = ’CC_B_V_ALL’
 title = ’filtered’
 writeNetCDF(lons,lats,levs,file_name,title,b,cc,v)

if __name__==’__main__’:
 pathTa = ’/pcmdi/cdms/sample/ccmSample_ta.xml’
 pathTas = ’/pcmdi/cdms/sample/ccmSample_tas.xml’
 # Process Jan80 through Dec81
 ccSlopeVarianceBySeasonFiltNet(pathTa,pathTas,1980,1981)

Notes:

1. Three modules are imported,cdms, Numeric, andcdtime. Numeric imple-
ments array functions.cdtime supports time arithmetic.

2. The writeNetCDF function creates a new netCDF file, and writes three variab
to the file:b (slope),c (correlation), andv (variance).lons , lats , andlevs are
1-D arrays for longitude, latitude, and level axes, respectively.

The file is created with thecreateDataset function. Since the file extension is
not .xml or .cdml , a CdmsFile is created.

Settingfile.title creates and sets a global attribute in the file.

Three axes are created viacreateAxis, and the units attributes are set.

The three variables are created viacreateVariable. The domain is specified as a
list of axis objects created previously.
Climate Data Management System

Examples

is

n

t

The linefoo[:] = b writes the array b to variable foo in the file.

It is important to close the file, to ensure that all data is written.

3. mapTimes returns a tuple of relative time values (time1 , time2), where:
- time1 is January ofyear1 , and
- time2 is December ofyear2 .
comptime is acdtime function which creates a component time.torel() trans-
lates to the appropriate relative units.

4. The two datasets are opened viaopenDataset(). fta is the dataset containing
upper-air temperature, andftas is the dataset containing surface air tempera-
ture.

5. The variabletaObj is retrieved using the predefined dataset attribute.vari-

ables . This is a dictionary with the variable ids as keys.

getLevel() returns the level (vertical dimension) axis forta . The slice operator
[:] reads the entire array, so thatlevs is a Numeric array containing the levels.
The same is true of latitude and longitude.

6. Datasets have a.axes attribute, which is a dictionary of all Axes in the file. It is
assumed that the time axis has id‘time’ , sotimeObj is the time axis. A better
approach is to use thegetTime() function to retrieve the time axis.

calendar is thecdtime calendar associated with the time axis. If no calendar
specified in the dataset, it is assumed to be the Gregorian calendar.

7. ThemapInterval function maps the coordinate interval (time1, time2) to an
index interval. The optional‘cc’ indicator specifies that the interval is closed o
both ends, that is ,time1 andtime2 are both contained in the interval. If the
indicator were omitted, it would default to‘co’ , meaning closed on the left,
open on the right.

mapInterval returns indices(i1,i2) , which represents all integers k such tha
i1<=k<i2. In other words, the closed coordinate interval(time1,time2,’cc’)

maps to the half-open index interval(i1,i2) .

This could also have been accomplished more directly using thegetRegion()
function, which takes an argument list of coordinate intervals. The following
obtains the same result:

tasObj = ftas.variables[‘tas’]
tas = tasObj.getRegion((time1,time2,’cc’))
Climate Data Management System 67

CDMS Python Application Programming Interface

68

lcu-
bles
he

10
8. ta is read using a multidimensional slice operator. Sinceta is assumed to be a
function of (time, level, latitude, longitude), the operation
ta = taObj[i1:i2,ilev]

reads times with indicesi1 throughi2-1 , level ilev , all latitudes, all longitudes.

9. This is the main routine of the script.pathTa andpathTas are dataset paths
which reference the XML metafiles. Data is processed from January 1980
through December 1981.

In the next example, the pointwise variance of a variable over time is ca
lated, for all times in a dataset. The name of the dataset is input, all varia
in the dataset are printed, then the name of the variables is selected. T
variance is then calculated and plotted via the vcs module.

#!/pcmdi/drach/cdat/python15/python
#
Calculates gridpoint total variance
from an array of interest
#

from Numeric import *
import cdms

AxisNotTime = ’First axis is not time, variable:’

Create a netCDF file, write v(lon,lat)
def writenc(filename,lons,lats,v):
 f = cdms.createDataset(’calcVar.nc’)
 lon = f.createAxis(’longitude’,lons)
 lat = f.createAxis(’latitude’,lats)
 varvar = f.createVariable(’variance’, cdms.CdDouble, (lat,lon))
 varvar[:] = v
 f.close()

Generate a plot of a 2-D array ’ar’.
’w’ is the VCS window object returned from vcs.init()
’xar’ and ’yar’ are the x-axis and y-axis coordinates.
’aname’, ’xname’, and ’yname’ are the names of the array, x-axis, and y-axis.
’xbounds’ and ’ybounds’ are boundary arrays.
def plot2d (w,ar,xar,yar,aname,xname,yname,units=None,

xbounds=None,ybounds=None):
 if xbounds is None:

xbounds = [1.5*xar[0]-0.5*xar[1]] + ((xar[0:-1]+xar[1:])/2.0).tolist() +
[1.5*xar[-1]-0.5*xar[-2]]

 if ybounds is None:
ybounds = [1.5*yar[0]-0.5*yar[1]] + ((yar[0:-1]+yar[1:])/2.0).tolist() +

[1.5*yar[-1]-0.5*yar[-2]]
 ar.setdimattribute(0,’values’,yar.tolist())
 ar.setdimattribute(1,’values’,xar.tolist())
 ar.setdimattribute(0,’bounds’,ybounds)
 ar.setdimattribute(1,’bounds’,xbounds)
 ar.setdimattribute(0,’name’,yname)
 ar.setdimattribute(1,’name’,xname)
Climate Data Management System

Examples

11

12
 if units is not None:
 ar.createattribute(’units’)
 ar.setattribute(’units’,units)
 ar.setattribute(’name’,aname)
 w.plot(ar,’AMIP’)

Wait for return in an interactive window
def pause():
 print ’Hit return to continue: ’,
 line = sys.stdin.readline()

Calculate pointwise variance of variable over time
Returns the variance and the number of points
for which the data is defined, for each grid point

def calcVar(var):
 # Check that the first axis is a time axis
 firstaxis = var.domain[0][0]
 if not firstaxis.isTime():
 raise AxisNotTime, var.id

 # Read the entire variable
 x = var[:]

 n = 1.*avg.count(x)
 sumxx = addmissing.reduce(x*x)
 sumx = addmissing.reduce(x)
 variance = (n*sumxx - (sumx * sumx))/(n * (n-1.))

 return variance,n

if __name__==’__main__’:
 import vcs, sys

 print ’Enter dataset path [/pcmdi/cdms/sample/obs/erbs_mo.xml]: ’,
 path = string.strip(sys.stdin.readline())
 if path==’’: path=’/pcmdi/cdms/sample/obs/erbs_mo.xml’

 # Open the dataset
 dataset = cdms.openDataset(path)

 # Select a variable from the dataset
 print ’Variables in file:’,path
 varnames = dataset.variables.keys()
 varnames.sort()
 for varname in varnames:
 var = dataset.variables[varname]
 if hasattr(var,’long_name’):
 long_name = var.long_name
 elif hasattr(var,’title’):
 long_name = var.title
 else:
 long_name = ’?’
 print ’%-10s: %s’%(varname,long_name)
 print ’Select a variable: ’,
 varname = string.strip(sys.stdin.readline())
 var = dataset.variables[varname]

 # Calculate variance
 variance,n = calcVar(var)
 dataset.close()
Climate Data Management System 69

CDMS Python Application Programming Interface

70

ent

13

14
 # Get longitude and latitude arrays
 x = var.getLongitude()[:]
 y = var.getLatitude()[:]

 # Save the data
 writenc(’calcVar.nc’,x,y,variance)

 # Plot variance
 w=vcs.init()
 w.setcolormap(’default’)
 if hasattr(var,’units’):
 units = var.units
 else:
 units = None
 plot2d(w,variance,x,y,varname+’

variance’,’longitude’,’latitude’,’(%s)^2’%units)
 pause()
 w.clear()
 plot2d(w,n,x,y,varname+’ npts defined’,’longitude’,’latitude’)
 pause()
 w.clear()

The result of running this script is as follows:

% calcVar.py
Enter dataset path [/pcmdi/cdms/sample/obs/erbs_mo.xml]:
 Variables in file: /pcmdi/cdms/sample/obs/erbs_mo.xml
albt : Albedo TOA [%]
albtcs : Albedo TOA clear sky [%]
rlcrft : LW Cloud Radiation Forcing TOA [W/m^2]
rlut : LW radiation TOA (OLR) [W/m^2]
rlutcs : LW radiation upward TOA clear sky [W/m^2]
rscrft : SW Cloud Radiation Forcing TOA [W/m^2]
rsdt : SW radiation downward TOA [W/m^2]
rsut : SW radiation upward TOA [W/m^2]
rsutcs : SW radiation upward TOA clear sky [W/m^2]
Select a variable: albt

<The variance is plotted>

Hit return to continue:

<The number of points is plotted>

Notes:

10. The plot2d function creates a boxfill plot of the 2-D arrayar in windoww. The
setdimattribute and setattribute functions are PCMDI Numeric extensions.

11. The domain of a variable is a list [elem1, elem2, ..., elemn] where each elem
is a tuple of the form (axis,start,length,true_length). In this example,
var.domain[0] is the domain element for the first axis, andvar.domain[0][0]

is the first axis object.

12. The dataset is opened viaopenDataset().
Climate Data Management System

Examples
13. var.getLongitude() gets the longitude axis. The slice operator [:] reads the
associated array.

14. The variance is plotted first, then the number of defined points is plotted.
Climate Data Management System 71

CDMS Python Application Programming Interface

72
 Climate Data Management System

CHAPTER 3 Regridding data
 on
3.1 Overview

This chapter describes how to interpolate gridded CDMS data to
another horizontal grid, within Python.

Regridding data is a two-step process:

• Given an input grid and output grid, generate a regridder function.

• Call the regridder function on a Numeric array, resulting in an array defined
the output grid.

The following example illustrates this process. The regridder function is
generated at line 9, and the regridding is performed at line 10:

 1 #!/usr/local/bin/python
 2 import cdms
 3 from regrid import Regridder
 4 f = cdms.openDataset(’/pcmdi/cdms/exp/cmip2/ccc/perturb.xml’)
 5 rlsf = f.variables[’rls’]
 6 ingrid = rlsf.getGrid()
 7 g = cdms.openDataset(’/pcmdi/cdms/exp/cmip2/mri/perturb.xml’)
 8 outgrid = g.variables[’rls’].getGrid()
 9 regridfunc = Regridder(ingrid, outgrid)
10 rlsnew = regridfunc(rlsf[:])
Climate Data Management System 73

Regridding data

74

h

nce
11 f.close()
12 g.close()

3.2 regrid module

The regrid module implements the regridding functionality. Althoug
this module is not strictly a part of CDMS, it is designed to work with
CDMS objects. The Python command

from regrid import Regridder

makes the Regridder class available within a Python program. An insta
of Regridder is a function which regrids data from input to output grid.

Line Notes

 2 Makes the CDMS module available.

 3 Makes theRegridder class available from theregrid module.

 4 Opens the input dataset.

 5 Gets the variable object named‘rls’ . No data is read.

 6 Gets the input grid.

 7 Opens a dataset to retrieve the output grid.

 8 The output grid is the grid associated with the variable named‘rls’

in datasetg. Just the grid is retrieved, not the data.

 9 Generates a regridder functionregridfunc .

10 Reads all data for variablerlsf , and calls the regridder function on
that data, resulting in a Numeric arrayrlsnew .
Climate Data Management System

regridder functions

c-
ght-

tput

up-

ri-

t-
n.
3.3 regridder functions

A regridder function is an instance of the Regridder class. The fun
tion is associated with an input and output grid. Typically its use is strai
forward: the function is passed an input array and returns the regridded
array. However, when the array has missing data, or the input and/or ou
grids are masked, the logic becomes more complicated.

Step 1: The regridder function first forms aninput mask. This mask is either
two-dimensional or ‘n-dimensional’, depending on the rank of the user-s
plied mask.

Two-dimensional case:

• Let mask_1 be the two-dimensional user mask supplied via themask argu-
ment, or the mask of the input grid if no user mask is specified.

• If a missing-data value is specified via themissing argument, let the
implicit_mask be the two-dimensional mask defined as 0 where the first ho
zontal slice of the input array is missing, 1 elsewhere.

• The input mask is the logical AND(mask_1, implicit_mask)

N-dimensional case: If the user mask is 3 or 4-dimensional with the
same shape as the input array, it is used as the input mask.

Table 3.1 Regridder Constructor

regridFunction = Regridder(inputGrid, outputGrid)

Create a regridder function which interpolates a data array from input to ou
put grid. Table 3.2 on page 77 describes the calling sequence of this functio

inputGrid andoutputGrid are CDMS grid objects.

Note: To set the mask associated withinputGrid or outputGrid, use the grid
setMask function.
Climate Data Management System 75

Regridding data

76

ut
rds,
he
r
rray,
ss-

y.
e, or
Step 2: The data is then regridded. In the two-dimensional case, the inp
mask is ‘broadcast’ across the other dimensions of the array. In other wo
it assumes that all horizontal slices of the array have the same mask. T
result is a new array, defined on the output grid. Optionally, the regridde
function can also return an array having the same shape as the output a
defining the fractional area of the output array which overlaps a non-mi
ing input grid cell. This is useful for calculating area-weighted means of
masked data.

Step 3: Finally, if the output grid has a mask, it is applied to the result arra
Where the output mask is 0, data values are set to the missing data valu
1.0e20 if undefined.
Climate Data Management System

regridder functions

.

-

f

Table 3.2 Regridder function

Type

Array regridFunction(array, missing=None, order=None,
mask=None)

Interpolate a gridded data array to a new grid. The interpola-
tion preserves the area-weighted mean on each horizontal
slice. An array of the same rank as the input array is returned

array is a Numeric array of rank 2, 3, or 4.

missing is a Float specifying the missing data value. The
default is 1.0e20.

order is a string indicating the order of dimensions of the
array. It has the form returned fromvariable.getOrder(). For
example, the string “tzyx” indicates that the dimension order
of array is (time, level, latitude, longitude). If unspecified, the
function assumes that the last two dimensions ofarray match
the input grid.

mask is a Numeric array, of datatype Integer or Float, consist
ing of ones and zeros. A value of 0 or 0.0 indicates that the
corresponding data value is to be ignored for purposes of
regridding. Ifmask is two-dimensional of the same shape as
the input grid, it overrides the mask of the input grid. If the
mask has more than two dimensions, it must have the same
shape asarray. In this case, themissing data value is also
ignored. Such an n-dimensional mask is useful if the pattern o
missing data varies with level (e.g., ocean data) or time.

Array, Array regridFunction(ar, missing=None, order=None,
mask=None, returnTuple=1)

If called with the optional returnTuple argument equal to 1, the
function returns a tuple (dataArray, maskArray). dataArray is
the result data array.maskArrayis a Float32 array of the same
shape asdataArray, such thatmaskArray[i,j] is fraction of the
output grid cell [i,j] overlapping a non-missing cell of the input
grid.
Climate Data Management System 77

Regridding data

78

sk.
3.4 Examples

Example: Create a uniform output grid.

 1 #!/usr/local/bin/python
 2 import cdms
 3 from regrid import Regridder
 4 f = cdms.openDataset(’rls_ccc_per.nc’)
 5 rlsf = f.variables[’rls’]
 6 ingrid = rlsf.getGrid()

7 outgrid = cdms.createUniformGrid(90.0, 46, -4.0, 0.0, 72, 5.0)
 8 regridFunc = Regridder(ingrid, outgrid)
 9 newrls = regridFunc(rlsf[:], missing=rlsf.getMissing())

10 f.close()

Example: Get a mask from a separate file, and set as the input grid ma

 1 import cdms
 2 from regrid import Regridder
 3 cdms.setAutoReshapeMode(’on’)
 4 f = cdms.openDataset(’so_ccc_per.nc’)
 5 sof = f.variables[’so’]
 6 ingrid = sof.getGrid()

Line Notes

 4 Open a netCDF file for input.

 7 Create a4 x 5 degree output grid. Note that this grid is not associated
with a file or dataset

 8 Create the regridder function

 9 Read all data and regrid. The missing data flag is set explicitly.
Climate Data Management System

Examples

en

y

 7 g = cdms.openDataset(’rls_mri_per.nc’)
 8 rlsg = g.variables[’rls’]
 9 outgrid = rlsg.getGrid()
10 regridFunc = Regridder(ingrid,outgrid)
11 h = cdms.openDataset(’sft_ccc.nc’)
12 sfth = h.variables[’sft’]
13 sftArray = sfth[:]
14 outArray =

regridFunc(sof[:],missing=sof.getMissing(),mask=sftMask)
15 f.close()
16 g.close()
17 h.close()

Example: Generate an array of zonal mean values.

 1 f = cdms.openDataset(’rls_ccc_per.nc’)
 2 rlsf = f.variables[’rls’]
 3 ingrid = rlsf.getGrid()
 4 outgrid = cdms.createZonalGrid(ingrid)
 5 regridFunc = Regridder(ingrid,outgrid)

Line Notes

 3 Enable autoreshape mode. This removes singleton dimensions wh
data is read from a file.

 6 Get the input grid.

 9 Get the output grid

10 Create the regridder function.

13 Get the mask.

14 Regrid with a user mask. The same thing could be accomplished b
setting the mask of ingrid via thesetMask method.

Note: Although it cannot be determined from the code, bothmask and
the input arraysof are four-dimensional. This is the ‘n-dimensional’
case.
Climate Data Management System 79

Regridding data

80
 6 mean = regridFunc(rlsf[:])
 7 f.close()

Example: Regrid an array with missing data, and calculate the area-
weighted mean of the result.

 1 from Numeric import *
 ...

2 outgrid = cdms.createUniformGrid(90.0, 46, -4.0, 0.0, 72, 5.0)
 3 outlatw, outlonw = outgrid.getWeights()
 4 outweights = outlatw[:,NewAxis]*outlonw
 5 grid = var.getGrid()
 6 sample = var[0,0]
 7 latw, lonw = grid.getWeights()
 8 weights = latw[:,NewAxis]*lonw
 9 inmask = where(greater(absolute(sample),1.e15),0,1)
10 mean = add.reduce(ravel(inmask*weights*sample))/

add.reduce(ravel(inmask*weights))
11 regridFunc = Regridder(grid, outgrid)
12 outsample, outmask = regridFunc(sample, mask=inmask,

returnTuple=1)
13 outmean = add.reduce(ravel(outmask*outweights*outsample))/

add.reduce(ravel(outmask*outweights))

Line Notes

 3 Get the input grid.

 4 Create a zonal grid.outgrid has the same latitudes asingrid , and a
singleton longitude dimension.createGlobalMeanGrid could be
used here to generate a global mean array.

5 Generate the regridder function.

6 Generate the zonal mean array.
Climate Data Management System

Examples
Line Notes

 2 Create a uniform target grid.

 3 Get the latitude and longitude weights.

 4 Generate a 2-D weights array.

 5 Get the input grid.var is a 4-D variable.

 6 Get the first horizontal slice fromvar .

 7-8 Get the input weights, and generate a 2-D weights array.

 9 Set the 2-D input mask.

10 Calculate the input array area-weighted mean.

11 Create the regridder function.

12 Regrid. BecausereturnTuple is set to 1, the result is a tuple (dataAr-
ray, maskArray).

13 Calculate the area-weighted mean of the regridded data.mean and
outmean should be approximately equal.
Climate Data Management System 81

Regridding data

82
 Climate Data Management System

CHAPTER 4 Plotting CDMS data in
Python
l as
4.1 Overview

Data read via the CDMS Python interface can be plotted using thevcs
module. This module, part of the Climate Data Analysis Tool (CDAT) is
documented in the CDAT reference manual. Thevcs module provides
access to the functionality of the VCS visualization program.

Examples of plotting data accessed from CDMS are given below, as wel
documentation for theplot routine keywords.

4.2 Examples

In the following examples, it is assumed that variablepsl is dimen-
sioned (time, latitude, longitude).psl is contained in the dataset named
‘sample.xml’ .

4.2.1 Example: plotting a horizontal grid
 1 import cdms, vcs
 2 cdms.setAutoReshapeMode(’on’)
Climate Data Management System 83

Plotting CDMS data in Python

84

re

nt
 3 f = cdms.openDataset(’sample.xml’)
 4 psl = f.variables[’psl’]
 5 sample = pr[0]
 6 w=vcs.init()
 7 w.setcolormap(’default’)
 8 w.plot(sample, variable=psl)
 9 f.close()

Notes:

That’s it! The axis coordinates, variable name, description, units, etc. a
obtained from variablepsl .

What if the units are not explicitly defined forpsl , or a different description
is desired?plot has a number of other keywords.

Line Notes

 2 Remove singleton dimensions when data is read.

 5 Get a horizontal slice, for the first timepoint.

 6 Create a VCS Canvasw.

 7 Set the default colormap.

 8 Plot the data. By default, a boxfill plot of a horizontal lat-lon array is
generated. The variablepsl encapsulates information on the grid
coordinates, variable name, units, etc.

 9 Close the file. This must be done after the reference to the persiste
variablepsl .
Climate Data Management System

Examples

, the

ey-

s.
4.2.2 Example: using plot keywords.
w.plot(sample, variable=psl, units=’mm/day’, file_comment=’High-

frequency reanalysis’, long_name="Sea level pressure",
comment1="Sample plot", hms="18:00:00", ymd="1978/01/01")

Notes:

• Keyword arguments can be listed in any order.

• Specific keywords take precedence over general keywords. In this example
units ‘mm/day’ takes precedence overpsl.units .

4.2.3 Example: plotting a time-latitude slice

If the data to be plotted is not a lat-lon slice, the xaxis and yaxis k
words are used to specify the axes:

 ...
 1 samp = psl[:,:,0]
 2 lat = psl.getLatitude()
 3 time = psl.getTime()
 4 w = vcs.init()
 5 w.plot(samp, name=’psl’, xaxis=lat, yaxis=time)

Notes:

Line Notes

 1 samp consists of all times, latitudes for longitude index 0

 2 lat is the CDMS latitude axis object, not just the array. Thexarray /
yarray keywords can be used to specify a 1-D Numeric vector of
values, as an alternative. The advantage of usingxaxis andyaxis is
that theplot routine can recognize the spatial orientation of the axe

 5 Thevariable keyword was not used here, so thename keyword
defines the identifier.
Climate Data Management System 85

Plotting CDMS data in Python

86

c
the

e
bset

is
key-

l,
4.2.4 Example: plotting subsetted data

It is important to note that a data array read from CDMS does not
carry spatial coordinate information or other metadata with it, with the
exception of a missing data value. The array argument ofplot is just
Numeric array, which can be read from a file or generated by a Numeri
operation. There may not be a persistent variable or axis associated with
data a priori.

In the following example, the data corresponds to a proper subset of th
time axis. A new CDMS axis object is created, corresponding to the su
retrieved.

 ...
 1 samp = psl[0:100,:,0]
 2 lat = psl.getLatitude()
 3 time = psl.getTime()
 4 w = vcs.init()

5 w.plot(samp, name=’psl’, xaxis=lat, yaxis=time.subaxis(0,100))

Because the first 100 times are retrieved,samp does not correspond to the
dataset time axis, which contains all the time values. Thesubaxis method
creates a new axis object corresponding to the first 100 timepoints.

4.3 plot method

Theplot method is documented in the CDAT Reference Manual. Th
section augments the documentation with a description of the optional
word arguments.

The general form of the plot command is:

canvas.plot(array [, args] [,key=value [, key=value [, ...]]])

where:

• canvasis a VCS Canvas object, created with thevcs.init method.

• array is a Numeric array, having between two and five dimensions. The last
dimensions of the array is termed the ‘x’ dimension, the next-to-last the ‘y’
dimension, then ‘z’, ‘t’, and ‘w’. For example, if the array is three-dimensiona
Climate Data Management System

plot method

on.
xis

 x-

e

the axes are (z,y,x). If array is four-dimensional, the axes are (t,z,y,x), and so
(Note that the ‘t’ dimension need have no connection with time; any spatial a
can be mapped to any plot dimension. For a graphics method which is two-
dimensional, such as boxfill, the y-axis is plotted on the horizontal, and the
axis on the vertical.

• args are optional positional arguments:

args := template_name, graphics_method, graphics_name
template_name: the name of the VCS template (e.g., ‘AMIP’)
graphics_method : the VCS graphics method (‘boxfill’)
graphics_name: the name of the specific graphics method (‘default’)

See the CDAT Reference Manual and VCS Reference Manual for a
detailed description of these arguments.

• key=value, ... are optional keyword/value pairs, listed in any order. These ar
defined in Table 4.1 on page 87.

Table 4.1 plot keywords

key type value

comment1 string Comment plotted above file_comment

comment2 string Comment plotted above comment1

comment3 string Comment plotted above comment2

continents 0 or 1 if ==1, plot continental outlines (default:
plot if xaxis is longitude, yaxis is
latitude -or- xname is ’longitude’
and yname is ’latitude’

file_comment string Comment, defaults to variable.par-
ent.comment)
Climate Data Management System 87

Plotting CDMS data in Python

88
grid CDMS grid
object

Grid associated with the data. Defaults to
variable.getGrid()

hms string Hour, minute, second

long_name string Descriptive variable name, defaults to
variable.long_name.

missing_value same type as
array

Missing data value, defaults to vari-
able.getMissing()

name string Variable name, defaults to variable.id

time cdtime rela-
tive or abso-
lute time

time associated with the data. Example:
cdtime.reltime(30.0, “days since
1978-1-1”)

units string Data units. Defaults to variable.units

variable CDMS vari-
able object

Variable associated with the data. The
variable grid must have the same
shape as the data array.

xarray
([y|z|t|w]arr
ay)

1-D
Numeric
array

Array of coordinate values, having the
same length as the corresponding
dimension. Defaults to xaxis[:]
(y|z|t|waxis[:])

xaxis
([y|z|t|w]axi
s)

CDMS axis
object

Axis object.xaxis defaults to
grid.getAxis(0),yaxis defaults to
grid.getAxis(1)

Table 4.1 plot keywords

key type value
Climate Data Management System

plot method
xbounds
(ybounds)

2-D
Numeric
array

Boundary array of shape (n,2) where n is
the axis length. Defaults to
xaxis.getBounds(), or xaxis.genGe-
nericBounds() if None, similarly for
ybounds.

xname
([y|z|t|w]na
me)

string Axis name. Defaults to xaxis.id
([y|z|t|w]axis.id)

xrev (yrev) 0 or 1 If xrev (yrev) is 1, reverse the direction of
the x-axis (y-axis). Defaults to 0,
with the following exceptions:

• If the y-axis is latitude, and has decreasing
values, yrev defaults to 1

• If the y-axis is a vertical level, and has
increasing pressure levels, yrev defaults to
1.

xunits
([y|z|t|w]uni
ts)

string Axis units. Defaults to xaxis.units
([y|z|t|w]axis.units).

xweights
(yweights)

1-D
Numeric
array

Axis weights, a NumPy array of the same
length as the dimension, used to cal-
culate the area-weighted mean. This
keyword is meaningful only if the
data is a horizontal, lat-lon slice.
Defaults to grid.getWeights().

Table 4.1 plot keywords

key type value
Climate Data Management System 89

Plotting CDMS data in Python

90
 Climate Data Management System

CHAPTER 5 Climate Data Markup
Language (CDML)
3C

f
is
te
that
a-
g,
5.1 Introduction

The Climate Data Markup Language (CDML) is the markup lan-
guage used to represent metadata in CDMS. CDML is based on the W
XML standard (http://www.w3.org). This chapter defines the syntax of
CDML. Read this section if you will be building or maintaining a CDMS
database.

XML, the eXtensible Markup Language, makes it possible to define
interoperable dialects of markup languages. The most recent version o
HTML, the Web hypertext markup language, is an XML dialect. CDML
also an XML dialect, geared toward the representation of gridded clima
datasets. XML provides rigor to the metadata representation, ensuring
applications can access it correctly. XML also deals with internationaliz
tion issues, and holds forth the promise that utilities for browsing, editin
and other common tasks will be available in the future.

CDML files have the file extension.xml or .cdml.
Climate Data Management System 91

Climate Data Markup Language (CDML)

92

t.

-
of an

s,
5.2 Elements

A CDML document consists of a nested collection ofelements. An
element is a description of the metadata associated with a CDMS objec
The form of an element is:

<tag attribute-list> element-content </tag>

or

<tag attribute-list />

where

• tag is a string which defines the type of element

• attribute-list is a blank-separated list of attribute-value pairs, of the
form:

attribute = “value”

• element-content depends on the type of element. It is either a list of ele
ments, or text which defines the element values. For example, the content
axis element either is a list of axis values, or is alinear element. For datasets,
the content is the blank-separated list of elements corresponding to the axe
grids, and variables contained in the dataset.

The CDML elements are:

Table 5.1 CDML Tags

Tag Description

attr Extra attribute

axis Coordinate axis

domain Axes on which a variable is defined

domElem Element of a variable domain

linear Linearly-spaced axis values
Climate Data Management System

Special Characters

n-
5.3 Special Characters

XML reserves certain characters for markup. If they appear as co
tent, they must be encoded to avoid confusion with markup:

For example, the comment

Certain “special characters”, such as <, >, and ‘, must
be encoded.

would appear in an attribute string as:

comment = “Certain "special characters", such
as <, >, and &apos, must be encoded.”

rectGrid Rectilinear Grid

variable Variable

Table 5.2 Special Character Encodings

Character Encoding

< <

> >

& &

“ "

‘ &apos

Table 5.1 CDML Tags

Tag Description
Climate Data Management System 93

Climate Data Markup Language (CDML)

94

as

the

e),
anu-
an

F.
d

-

5.4 Identifiers

In CDMS, all objects in a dataset have a unique stringidentifier. The
id attribute holds the value of this identifier. If the variable, axis, or grid h
a string name within a data file, then theid attribute ordinarily has this
value. Alternatively, the name of the object in a data file can be stored in
name_in_file attribute, which can differ from theid. Datasets also have
IDs, which can be used within a larger context (databases).

An identifer must start with an alphabetic character (upper or lower cas
an underscore (_), or a colon (:). Characters after the first must be alph
meric, an underscore, or colon. There is no restriction on the length of
identifier.

5.5 GDT Metadata Standard

The GDT metadata standard (http://www-pcmdi.llnl.gov/drach/
GDT_convention.html) defines a set of conventions for usage of netCD
This standard is supported by CDML. The document defines names an
usage for metadata attributes.

5.6 CDML Syntax

The following notation is used in this section:

• Courier font is used for a syntax specification.Bold font highlights lit-
erals.

• (R|S) denotes ‘either R or S’.

• R* denotes ‘zero or more R’.

• R+ denotes ‘one or more R’.

A CDML document consists of a prolog followed by a single dataset ele
ment.

1. CDML-document ::= prolog dataset-element
Climate Data Management System

CDML Syntax

e-

d an
The prolog defines the XML version, and the Document Type Definition
(DTD), a formal specification of the document syntax. See http://
www.w3.org/TR/1998/REC-xml-19980210 for a formal definition of XML
Version 1.0.

2. prolog ::=
<?xml version="1.0"?>
<!DOCTYPE dataset SYSTEM "http://www-pcmdi.llnl.gov/
~drach/cdms/cdml.dtd">

5.6.1 Dataset Element

A dataset element describes a single dataset. The content is a list of el
ments corresponding to the axes, grids, and variables contained in the
dataset. Axis, variable, and grid elements can be listed in any order, an
element ID can be used before the element is actually defined.

3. dataset-element ::= <dataset dataset-attributes >
dataset-content </dataset>

4. dataset-content ::= (axis-element | grid-element |
variable-element)* extra-attribute-element+

Table 5.3 Dataset Attributes

Attribute Required? GDT? Notes

appendices N Y Version number

calendar N Y Calendar used for encoding time
axes.

“gregorian” | “julian” | “noleap” |
“360”

comment N Y Additional dataset information

Conven-
tions

Y Y The netCDF metadata standard.

Example: “GDT 1.3”

directory N N Root directory of the dataset

frequency N N Temporal frequency

history N Y Evolution of the data
Climate Data Management System 95

Climate Data Markup Language (CDML)

96

 a
is a
5.6.2 Axis Element

An axis element describes a single coordinate axis. The content can be
blank-separated list of axis values or a linear element. A linear element
representation of a linearly-spaced axis as (start, delta, length).

5. axis-element ::= <axis axis-attributes> axis-content >
</axis>

6. axis-content ::= (axis-values | linear-element)
extra-attribute-element*

7. axis-values ::= [value*]

8. linear-element ::= <linear delta=” value ”
length=” Integer ” start=” value ”> </linear>

id Y N Dataset identifier

institution N Y Who made or supplied the data

production N Y How the data was produced

project N N Project associated with the data

Example: “CMIP 2”

template N N File template, Section 1.3.1. Also see
notes for the variable template.

Table 5.3 Dataset Attributes

Attribute Required? GDT? Notes
Climate Data Management System

CDML Syntax
Table 5.4 Axis Attributes

Attribute Required? GDT? Notes

associate N Y IDs of variables containing alterna-
tive sets of coordinates.

axis N Y The spatial type of the axis:

“T” - time

“X” - longitude

“Y” - latitude

“Z” - vertical level

“-” - not spatiotemporal

bounds N Y ID of the boundary variable

comment N N String comment

compress N Y Dimensions which have been com-
pressed by gathering

datatype Y N Char, Short, Long, Float, Double,
or String

expand N Y Coordinates prior to contraction

id Y N Axis identifier. Also the name of
the axis in the underlying file(s), if
name_in_file is undefined.

isvar N N “true” | “false”

“false” if the axis does not have
coordinate values explicitly
defined in the underlying file(s).

Default: “true”

length N N Number of axis values, including
values for which no data is defined.
Cf. partition_length .

long_name N Y Long description of a physical
quantity

modulo N Y Arithmetic modulo of an axis with
circular topology.
Climate Data Management System 97

Climate Data Markup Language (CDML)

98

cti-
5.6.3 Grid Element

A grid element describes a horizontal, latitude-longitude grid which is re
linear in topology,

9. grid-element ::= <rectGrid grid-attributes > extra-
attribute-element* </rectGrid>

name_in_file N N Name of the axis in the underlying
file(s). See id.

old_interval N Y Typical spacing between two adja-
cent coordinates of the uncon-
tracted axis

partition N N Section 1.3.2

partition_leng
th

N N Number of axis points for which
data is actually defined. If data is
missing for some values, this will
be smaller than thelength.

positive N Y Direction of positive for a vertical
axis

old_spacing N Y Adjunct toold_interval.

“uniform” | “variable” | “disjoint”

topology N Y Axis topology.

“circular” | “linear”

units Y Y Units of a physical quantity

weights N N Name of the weights array

Table 5.4 Axis Attributes

Attribute Required? GDT? Notes
Climate Data Management System

CDML Syntax

le is

et.

ta
5.6.4 Variable Element

A variable element describes a data variable. The domain of the variab
an ordered list ofdomain elementsnaming the axes on which the variable is
defined. A domain element is a reference to an axis or grid in the datas

Thelength of a domain element is the number of axis points for which da
can be retrieved. Thepartition_length is the number of points for which
data is actually defined. If data is missing, this is less than thelength.

10. variable-element ::= <variable variable-attributes >
variable-content </variable>

11. variable-content ::= variable-domain extra-attribute-
element*

12. variable-domain ::= <domain> domain-element* </
domain>

Table 5.5 RectGrid Attributes

Attribute Required? GDT? Notes

id Y N Grid identifier

type Y N Grid classification

“gaussian” | “uniform” | “equalarea” |
“generic”

Default: “generic”

latitude Y N Latitude axis name

longitude Y N Longitude axis name

mask N N Name of associated mask variable

order Y N Grid ordering

“yx” | “xy”

Default: “yx”, axis order is latitude,
longitude
Climate Data Management System 99

Climate Data Markup Language (CDML)

100
13. domain-element ::= <domElem name=” axis-name ”
start=” Integer ” length=” Integer ”
partition_length=” Integer ”/>

Table 5.6 Variable Attributes

Attribute Required? GDT? Notes

id Y N Variable identifier. Also, the name
of the variable in the underlying
file(s), if name_in_file is unde-
fined.

add_offset N Y Additive offset for packing data.
Seescale_factor.

associate N Y IDs of variables containing alterna-
tive sets of coordinates

axis N Y Spatio-temporal dimensions.

Ex: “TYX” for a variable with
domain (time, latitude, longitude)

comments N N Comment string

datatype Y N Char, Short, Long, Float, Double,
or String

grid_name N N Id of the grid

grid_type N N “gaussian” | “uniform” |
“equalarea” | “generic”

long_name N Y Long description of a physical
quantity.

missing_value N Y Value used for data that are
unknown or missint.

name_in_file N N Name of the variable in the under-
lying file(s). See id.

scale_factor N Y Multiplicative factor for packing
data. Seeadd_offset.

subgrid N Y Records how data values represent
subgrid variation.
Climate Data Management System

A Sample CDML Document

p-
 ele-
n is

car-

e is
5.6.5 Attribute Element

Attributes which are not explicitly defined by the GDT convention are re
resented as extra attribute elements. Any dataset, axis, grid, or variable
ment can have an extra attribute as part of its content. This representatio
also useful if the attribute value has non-blank whitespace characters (
riage returns, tabs, linefeeds) which are significant.

The datatype is one of: Char, Short, Long, Float, Double, or String.

14. extra-attribute-element ::= <attr name= attribute-name
datatype=” attribute-datatype ”> attribute-value </
attr>

5.7 A Sample CDML Document

Dataset ‘sample’ has two variables, and six axes.

Note:

• The file is indented for readability. This is not required; the added whitespac
ignored.

template N N Name of the file template to use for
this variable. Overrides the dataset
value. Section 1.3.1.

units N Y Units of a physical quantity.

valid_max N Y Largest valid value of a variable

valid_min N Y Smallest valid value of a variable

valid_range N Y Largest and smallest valid values
of a variable

Table 5.6 Variable Attributes

Attribute Required? GDT? Notes
Climate Data Management System 101

Climate Data Markup Language (CDML)

102

v),

pre-

,

• The dataset template indicates that the dataset is partitioned by variable (%
vertical level (%L) and time (%Y). For variable ‘va’, the dataset template is
superseded by the variable’s template attribute.

• The extra attribute format has the value “GRADS”. This is equivalent to

format = “GRADS”

• The time attributes are represented as linearly spaced. All other axes are re
sented as vectors of values.

• The axis ‘time_22152’ is named ‘time’ in the underlying data file(s).

• variable ‘hur’ is a function of (time, level, latitude, longitude), with shape (1, 1
73, 144). Variable ‘va’ is a function of (time_22152, level_2, latitude, longi-
tude), with shape (22152, 2, 73, 144).

<?xml version="1.0"?>
<!DOCTYPE dataset SYSTEM "http://www-pcmdi.llnl.gov/~drach/cdms/cdml.dtd">
<dataset

template="%v/sample/%v.%L..%Y.ctl"
id ="sample"
Conventions="GDT 1.3"
directory="/pcmdi/obs/sample/"
>
<attr name="format" datatype="String">GRADS</attr>
<axis

id ="time"
length="1"
units="hours since 1979-1-1 0:0"
datatype="Double"
partition = "[0 1]"
partition_length = "1"
>

<linear
delta="0.0"
length="1"
start="0.0"
>
</linear>

</axis>
<axis

id ="level"
length="1"
units="lev"
partition = "[0 1]"
partition_length = "1"
datatype="Float"
>
[850.]
</axis>

<axis
id ="latitude"
length="73"
units="degrees"
datatype="Float"
Climate Data Management System

A Sample CDML Document
>
[-90. -87.5 -85. -82.5 -80. -77.5 -75. -72.5 -70. -67.5 -65. -62.5
...

 80. 82.5 85. 87.5 90.]
</axis>

<axis
id ="longitude"
length="144"
units="degrees"
datatype="Float"
>
[0. 2.5 5. 7.5 10. 12.5 15. 17.5 20. 22.5
...

 352.5 355. 357.5]
</axis>

<variable
id ="hur"
missing_value="1.00000002004e+20"
datatype="Float"
>
<attr name="title" datatype="String">Relative humidity [%]</attr>
<domain

>
<domElem length="1" start="0" name="time"/>
<domElem length="1" start="0" name="level"/>
<domElem length="73" start="0" name="latitude"/>
<domElem length="144" start="0" name="longitude"/>
</domain>

</variable>
<axis

axis ="T"
id ="time_22152"
partition="[0 1460 1460 2924 2924 4384 4384 5844 5844 7304
7304 8768 8768

 10228 10228 11688 11688 13148 13148 14612 14612 16072 16072 17532
 17532 18992 18992 20456 20456 21916 21916 22152]"

units="hours since 1979-1-1 0:0"
datatype="Double"
length="22152"
partition_length="22152"
name_in_file="time"
>

<linear
delta="6.0"
length="22152"
start="0.0"
>
</linear>

</axis>
<axis

axis ="Z"
id ="level_2"
partition="[0 1 1 2]"
units="lev"
datatype="Float"
length="2"
partition_length="2"
name_in_file="level"
>

<linear
Climate Data Management System 103

Climate Data Markup Language (CDML)

104
delta="-650.0"
length="2"
start="850.0"
>
</linear>

</axis>
<variable

template="uva/rnl_ecm/uva.%L.rnl_ecm.%Y.ctl"
id ="va"
missing_value="1.00000002004e+20"
datatype="Float"
>
<attr name="title" datatype="String">Northward wind [m/s]</attr>
<domain

>
<domElem partition_length="22152" name="time_22152" length="22152"

start="0"/>
<domElem partition_length="2" name="level_2" length="2" start="0"/

>
<domElem name="latitude" length="73" start="0"/>
<domElem name="longitude" length="144" start="0"/>
</domain>

</variable>
</dataset>
Climate Data Management System

CHAPTER 6 CDMS Utilities
ces-

The

di-
ess

-

ned:

he
ri-

parti-
6.1 cdimport: Importing datasets into CDMS

6.1.1 Overview

A dataset is a partitioned collection of files. To make a dataset ac
sible within CDMS, it must first beimported into the database. CDMS rep-
resents datasets as an ASCII metafile in the CDML markup language.
file contains all metadata, together with information describing how the
dataset is partitioned into files. (Note: CDMS provides an interface to in
vidual files as well. It is not necessary to import an individual file to acc
it.)

For CDMS applications to work correctly, it is important that the CDML
metafile be correct. Thecdimport utility generates a metafile from a collec
tion of data files.

CDMS assumes that there is some regularity in how datasets are partitio

• A variable can be partitioned (split across files) in at most two dimensions. T
partitioned dimension(s) must be either time or vertical level dimensions; va
ables may not be partitioned across longitude or latitude. Datasets can be
Climate Data Management System 105

CDMS Utilities

106

on

i-

ute.

ed

lud-

ath-
tioned by variable as well. For example, one set of files might contain heat
fluxes, while another set contains wind speeds.

• The file names must be describable with a file template (see “File Template”
page 11.)

Otherwise, there is considerable flexibility in how a dataset can be part
tioned:

• Files can contain a single variable or all variables in the dataset.

• The time axis can have gaps. Time can be represented as relative or absol

• Horizontal grid boundary information and related information can be duplicat
across files.

• Variables can be omitted.

• Variables can be on different grids.

• Files may be in any of the self-describing formats supported by CDMS, inc
ing netCDF, HDF, GrADS/GRIB, and DRS.

6.1.2 cdimport Syntax

The syntax of the cdimport command is:

cdimport [-dghjmrsv] [-evectorEpsilon] [-l levelName] [-n variableName] [-t
timeName] [-u variableName] [-x xmlFile] directory template datasetId

where:

• directory is the root directory of the dataset.directorymay not contain template
specifiers (see “Template Specifiers” on page 49.)

• template is the file template which specifies the dataset partitioning. It is a p
name, relative to the directory, containing template specifiers.

• datasetId is a string identifier for the dataset.
Climate Data Management System

cdimport: Importing datasets into CDMS

 is

-
t

-

Table 6.1 cdimport command options

Option Description

d Save output after each variable is scanned. By default no output
written until all files have been scanned. This option is useful for
debugging.

e Specify equality of axes. By default, axes in different files are
treated as equivalent if their respective values are identical. Occa
sionally files contain axes which should be treated as identical, bu
have slightly different values.

vectorEpsilon is interpreted as follows: two axis vectors x and y
are treated as ’equal’ if and only if for each element a(n), b(n),
abs(a(n)-b(n))<=abs(a(n)*vectorEpsilon).

The default value is 0.0.

g Allow gaps in extended, linear time dimensions (see -s option).

h Print help.

j Ingest levels as increasing.

By default, if vertical level values are split across files, the axis val
ues are assumed to be decreasing.

l Name of the extended level dimension.

By default, the extended level dimension must have the name
’level’.

m Ingest times as decreasing.

By default, if the time axis is split across files, the axis values are
assumed to be increasing.

n Skip a variable. This option may be used more than once.

r Assert that the extended time dimension is absolute time.

By default time is relative by default (See “Python types used in
CDMS” on page 14.)
Climate Data Management System 107

CDMS Utilities

108

ble

l-

ta-
-

6.1.3 Examples

1. Ingest the six-hourly NCEP reanalysis data. Treat time as linear, with possi
gaps in the time dimension. Skip variable ‘rsut’. Set the dataset ID to
‘ncep_reanalysis_6h’. Print the status of the script.

cdimport -g -v -n rsut -x ncep_reanalysis_6h.xml /pcmdi/obs/6h/
%v/rnl_ncep/%v.rnl_ncep.%Y.ctl ncep_reanalysis_6h

2. Ingest the CMIP control dataset for the CCC model.

s Assert that the extended time dimension is linear. This option is
recommended if the extended time dimension is large and is
known to be linear, as the script will run much more quickly and
generate more concise output.

By default, the time dimension is represented as a list of time va
ues. This is cumbersome when the time dimension is linear and
very large. Using this option generates a more concise represen
tion as (start, delta, length). The delta is determined as the differ
ence between the first two time values found when the files are
scanned. An error is raised if the time axis is not in fact linear.

If the time dimension has gaps, use -g.

t Name of the extended time dimension.

By default, the time dimension must have name ’time’.

u FlagvariableName as duplicated in all files. Variables which rep-
resent axis bounds, weights, and other associated variables, as
specified by the GDT convention, are included by default.

This option may be used more than once.

v Print the status of the ingest.

x Save output as an XML file.

By default, output is written to standard output.

Table 6.1 cdimport command options

Option Description
Climate Data Management System

cdimport: Importing datasets into CDMS

or-

is-
hat
rt

his
from
cdimport -v -x ccc_con.xml /pcmdi/yoda4/dease/cmip/ccc
%v_ccc_con.nc ccc_con

6.1.4 File Formats

Data may be represented in a variety of self-describing binary file f
mats, including

• netCDF, the Unidata Network Common Data Format

• HDF, the NCSA Hierarchical Data Format

• GrADS/GRIB, WMO GRIB plus a GrADS control file (.ctl)
The first non-comment line of the control file must be adset specification.

• DRS, the PCMDI legacy format.

6.1.5 Debugging

Given the wide variety of ways that data can be represented (or m
represented) in the aforementioned file formats, there are many ways t
cdimport can fail. Often, an option is available which will allow the impo
to succeed.

The best way to track down an error is to use the verbose option (-v). T
generates a great deal of useful status information. Here is an excerpt
the output of Example 1:

% cdimport -g -v -n rsut -x sample.xml /pcmdi/obs/6h/
%v/rnl_ncep/%v.rnl_ncep.%Y.ctl ncep_reanalysis_6h

[’/usr/local/bin/cdimport’, ’-g’, ’-v’, ’-n’, ’rsut’, ’-x’, ’junk.xml’, ’/
pcmdi/obs/6h/’, ’%v/rnl_ncep/%v.rnl_ncep.%Y.ctl’,
’ncep_reanalysis_6h’]

Looking for matching files (this may take a while...)
*** Generating dataset ncep_reanalysis_6h from directory /pcmdi/obs/6h/ ,

template %v/rnl_ncep/%v.rnl_ncep.%Y.ctl ***
List of variables found (in filenames): [’hfls’, ’hfss’, ’pr’, ’psl’, ’rlds’,

’rlus’, ’rlut’, ’rsds’, ’rsdt’, ’rsus’, ’rsut’, ’tauuv’, ’uvas’]
List of timepoints found: [(1978-1-1 0:0:0.0, None), (1979-1-1 0:0:0.0, None),

(1980-1-1 0:0:0.0, None), (1981-1-1 0:0:0.0, None), (1982-1-1 0:0:0.0,
None), (1983-1-1 0:0:0.0, None), (1984-1-1 0:0:0.0, None), (1985-1-1
0:0:0.0, None), (1986-1-1 0:0:0.0, None), (1987-1-1 0:0:0.0, None),
(1988-1-1 0:0:0.0, None), (1989-1-1 0:0:0.0, None), (1990-1-1 0:0:0.0,
None), (1991-1-1 0:0:0.0, None), (1992-1-1 0:0:0.0, None), (1993-1-1
0:0:0.0, None), (1994-1-1 0:0:0.0, None), (1995-1-1 0:0:0.0, None),
(1996-1-1 0:0:0.0, None), (1997-1-1 0:0:0.0, None), (1998-1-1 0:0:0.0,
None)]

List of levels found: [(None, None)]
Scanning /pcmdi/obs/6h/hfls/rnl_ncep/hfls.rnl_ncep.1978.ctl
Scanning /pcmdi/obs/6h/hfls/rnl_ncep/hfls.rnl_ncep.1979.ctl
Scanning /pcmdi/obs/6h/hfls/rnl_ncep/hfls.rnl_ncep.1980.ctl
Climate Data Management System 109

CDMS Utilities

110

-
nd
the

 not
tical
. If

data

r
lin-

. In
...
Scanning /pcmdi/obs/6h/hfss/rnl_ncep/hfss.rnl_ncep.1998.ctl
Scanning /pcmdi/obs/6h/pr/rnl_ncep/pr.rnl_ncep.1978.ctl
...
Scanning /pcmdi/obs/6h/pr/rnl_ncep/pr.rnl_ncep.1998.ctl
Scanning /pcmdi/obs/6h/rlds/rnl_ncep/rlds.rnl_ncep.1978.ctl
...
File not found, was skipped: /pcmdi/obs/6h/rlus/rnl_ncep/rlus.rnl_ncep.1984.ctl
...
Scanning /pcmdi/obs/6h/uvas/rnl_ncep/uvas.rnl_ncep.1998.ctl
sample.xml written

cdimport looks first for files which match the directory and template pro
vided. It then lists the variables found in the filenames, the timepoints fou
in the filenames (as pairs of start and end times), and the levels found in
filenames (as pairs of start and end levels). In this example, the data is
partitioned across vertical levels, so none are listed. There may be a ver
dimension in the files, but data is not split into files across that dimension
the %v specifier is not used, no variables will be listed either.

In the next phase of the import the matching files are scanned for meta
information. The algorithm for this is straightforward:

for each variable appearing in a filename
- for each (first time, last time) in a filename
 - for each (first level, last level) in a filename
 - generate the filename for variable,time,level using the directory and

template
 - scan the file for metadata
 - merge in the file metadata

In the above example, the variable ‘rlus’ does not have data for the yea
1984. Since the -g option was specified, the time dimension is treated as
ear and gaps are permitted, so this is not considered an error.

The last phase is to write out the accumulated metadata in CDML format
the above example, this generates the filesample.xml .

In the above example, the ‘-g’ option specifies that missing times are
allowed. If the ‘-s’ option is used instead, the following results:

% cdimport -s -v -x junk.xml /pcmdi/obs/6h/ %v/rnl_ncep/%v.rnl_ncep.%Y.ctl
ncep_reanalysis_6h

...
Scanning /pcmdi/obs/6h/hfls/rnl_ncep/hfls.rnl_ncep.1978.ctl
...
Scanning /pcmdi/obs/6h/psl/rnl_ncep/psl.rnl_ncep.1985.ctl
Scanning /pcmdi/obs/6h/psl/rnl_ncep/psl.rnl_ncep.1986.ctl
Climate Data Management System

cdimport: Importing datasets into CDMS

tion

e

if-
t
 the
 is to

,
d

g-
s to
Traceback (innermost last):
 File "/usr/local/bin/cdimport", line 553, in ?
 main(sys.argv)
 File "/usr/local/bin/cdimport", line 169, in main
 dset2 =

extend(dset2,dset3,extendedTime,timeIsRelative,linearDimList,allowGaps
,’T’)

 File "/usr/local/bin/cdimport", line 505, in extend
 raise CannotExtend, ’Axis %s is not linear or has the wrong length in the

PREVIOUS file’%extendDim
Cannot extend a dataset: : Axis time is not linear or has the wrong length in

the PREVIOUS file

The ‘previous’ file is a reference to data for 1985. Subsequent examina
of this file reveals that the last timepoint in that file is missing.

A common error is to misspell the directory or template. In this case, th
result will be the message ‘No data found’. For example

% cdimport -s -v -x junk.xml /pcmdi/obs/6h/ %v/none/%v.rnl_ncep.%Y.ctl
ncep_reanalysis_6h

...
List of variables found (in filenames): []
List of timepoints found: []
List of levels found: []
No data found

6.1.6 Name Aliasing

A problem can occur if variables in different files are defined on d
ferent grids. What if the axis names are the same? CDMS requires tha
within a dataset, axis and variable IDs (names) be unique. What should
longitude axes be named in CDMS to ensure uniqueness? The answer
allow CDMS IDs to differ from file names.

If a variable or axis has a CDMS ID which differs from its name in the file
it is said to have analias. The actual name of the object in the file is store
in the attributename_in_file. cdimport uses this mechanism to resolve
name conflicts; a new axis ID is generated, and thename_in_file is set to
the axis name in the file.

Name aliases also can be used to enforce naming standards. For data
received from an outside organization, variable names may not be reco
nized by existing applications. Often it is simpler and safer to add an alia
the metafile rather than rewrite the data.
Climate Data Management System 111

CDMS Utilities

112

ent:
6.1.7 Generating Metadata for a File

A single file can be accessed directly in CDMS, without ingesting.
However, frequently it is useful to generate an ASCII description of the
metadata in the file. To do this, use the filename as the template argum

cdimport . clt.nc sample
Climate Data Management System

Index

A
assignValue

axis 27
variable 60

C
cdimport 105
CDML

Climate Data Markup Language91
element92
identifier 94
tags 92

close
cdmsFile34
database39
dataset50

connect39
copyAxis 34
copyGrid 34
createAxis

cdmsFile26, 34
dataset26
transient18, 26

createDataset18, 33, 48
createEqualAreaAxis18
createGaussianAxis19
createGenericGrid19
createGlobalMeanGrid19
createRectGrid

cdmsFile35, 52
dataset50, 52
transient20, 52

createUniformGrid20
createUniformLatitudeAxis21
createUniformLongitudeAxis21
createVariable35, 59
createVariableCopy35
createZonalGrid21
Climate Data Management System 113

114
D
database36
designateCircular27
designateLatitude27
designateLevel27
designateLongitude27
designateTime28
DRS 109

G
GDT metadata standard94
getAxis 52, 60
getBounds

axis 28
grid 53

getCalendar28
getGrid 60
getLatitude

grid 53
variable 60

getLevel 60
getLongitude

grid 53
variable 61

getMask53
getMissing61
getObject45
getOrder

grid 53
variable 61

getPaths
dataset51
variable 61

getRegion62
getTemplate62
getTime 62
getType54
getValue

axis 28
variable 62

getWeights54
GRIB 109
Climate Data Management System

H
HDF 109

I
id 36
isCircular 29
isLatitude 29
isLevel 29
isLinear 29
isLongitude29
isTime 29

L
len 29, 62

M
mapInterval30

N
name alias111
netCDF 109

O
openDataset22, 33, 40, 48

P
plot method86

R
regrid function77
Regridder75
relative name36

S
search result44
search result entry45
searchFilter41
searchPredicate44
setAutoBounds22
setAutoReshapeMode23
setBounds

axis 31
grid 55

setCalendar31
Climate Data Management System 115

116
setClassifyGrids23
setMask55
setType55
subaxis32
subGrid 56
subGridRegion57
sync

cdmsFile36
dataset51

T
tag 36
template Specifiers49
transpose58
typecode

axis 32
variable 62

V
variable 8

X
XML 91
Climate Data Management System

	Climate Data Management System
	Table of Contents
	CHAPTER 1 Introduction
	1.1 Overview
	1.2 Basic Concepts
	1.2.1 Variables
	1.2.2 Container classes: Databases, Datasets, and CdmsFiles
	1.2.3 Structural classes: Axes and Grids
	1.2.4 Xlinks

	1.3 Partitioned Datasets
	1.3.1 File Template
	1.3.2 Partition

	CHAPTER 2 CDMS Python Application Programming Interface
	2.1 Overview
	Table 2.1 Python types used in CDMS

	2.2 A first example
	2.3 cdms module
	Table 2.2 cdms module functions
	Table 2.3 Class Tags

	2.4 CdmsObj
	Table 2.4 Attributes common to all CDMS objects
	Table 2.5 Getting and setting attributes

	2.5 Axis
	Table 2.6 Axis Internal Attributes
	Table 2.7 Axis Constructors
	Table 2.8 Axis Methods
	Table 2.9 Axis Slice Operators

	2.6 CdmsFile
	Table 2.10 CdmsFile Internal Attributes
	Table 2.11 CdmsFile Constructors
	Table 2.12 CdmsFile Methods
	Table 2.13 CDMS Datatypes

	2.7 Database
	2.7.1 Overview
	Table 2.14 Database Internal Attributes
	Table 2.15 Database Constructors
	Table 2.16 Database Methods

	2.7.2 Searching a database
	Table 2.17 SearchResult Methods
	Table 2.18 ResultEntry Attributes
	Table 2.19 ResultEntry Methods

	2.7.3 Accessing data
	2.7.4 Examples of database searches

	2.8 Dataset
	Table 2.20 Dataset Internal Attributes
	Table 2.21 Dataset Constructors
	Table 2.22 Open Modes
	Table 2.23 Template Specifiers
	Table 2.24 Dataset Methods

	2.9 RectGrid
	Table 2.25 RectGrid Internal Attributes
	Table 2.26 RectGrid Constructors
	Table 2.27 RectGrid Methods

	2.10 Variable
	Table 2.28 Variable Internal Attributes
	Table 2.29 Variable Constructors
	Table 2.30 Variable Methods
	Table 2.31 Variable Slice Operators
	Table 2.32 Coordinate Intervals used in getRegion()

	2.11 Examples

	CHAPTER 3 Regridding data
	3.1 Overview
	3.2 regrid module
	Table 3.1 Regridder Constructor

	3.3 regridder functions
	Table 3.2 Regridder function

	3.4 Examples

	CHAPTER 4 Plotting CDMS data in Python
	4.1 Overview
	4.2 Examples
	4.2.1 Example: plotting a horizontal grid
	4.2.2 Example: using plot keywords.
	4.2.3 Example: plotting a time-latitude slice
	4.2.4 Example: plotting subsetted data

	4.3 plot method
	Table 4.1 plot keywords

	CHAPTER 5 Climate Data Markup Language (CDML)
	5.1 Introduction
	5.2 Elements
	Table 5.1 CDML Tags

	5.3 Special Characters
	Table 5.2 Special Character Encodings

	5.4 Identifiers
	5.5 GDT Metadata Standard
	5.6 CDML Syntax
	5.6.1 Dataset Element
	Table 5.3 Dataset Attributes

	5.6.2 Axis Element
	Table 5.4 Axis Attributes

	5.6.3 Grid Element
	Table 5.5 RectGrid Attributes

	5.6.4 Variable Element
	Table 5.6 Variable Attributes

	5.6.5 Attribute Element

	5.7 A Sample CDML Document

	CHAPTER 6 CDMS Utilities
	6.1 cdimport: Importing datasets into CDMS
	6.1.1 Overview
	6.1.2 cdimport Syntax
	Table 6.1 cdimport command options

	6.1.3 Examples
	6.1.4 File Formats
	6.1.5 Debugging
	6.1.6 Name Aliasing
	6.1.7 Generating Metadata for a File

	Index

